Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Vanpouille-Box is active.

Publication


Featured researches published by Claire Vanpouille-Box.


Cancer Research | 2015

TGFβ Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity

Claire Vanpouille-Box; Julie M. Diamond; Karsten A. Pilones; Jiri Zavadil; James S. Babb; Silvia C. Formenti; Mary Helen Barcellos-Hoff; Sandra Demaria

T cells directed to endogenous tumor antigens are powerful mediators of tumor regression. Recent immunotherapy advances have identified effective interventions to unleash tumor-specific T-cell activity in patients who naturally develop them. Eliciting T-cell responses to a patients individual tumor remains a major challenge. Radiation therapy can induce immune responses to model antigens expressed by tumors, but it remains unclear whether it can effectively prime T cells specific for endogenous antigens expressed by poorly immunogenic tumors. We hypothesized that TGFβ activity is a major obstacle hindering the ability of radiation to generate an in situ tumor vaccine. Here, we show that antibody-mediated TGFβ neutralization during radiation therapy effectively generates CD8(+) T-cell responses to multiple endogenous tumor antigens in poorly immunogenic mouse carcinomas. Generated T cells were effective at causing regression of irradiated tumors and nonirradiated lung metastases or synchronous tumors (abscopal effect). Gene signatures associated with IFNγ and immune-mediated rejection were detected in tumors treated with radiation therapy and TGFβ blockade in combination but not as single agents. Upregulation of programmed death (PD) ligand-1 and -2 in neoplastic and myeloid cells and PD-1 on intratumoral T cells limited tumor rejection, resulting in rapid recurrence. Addition of anti-PD-1 antibodies extended survival achieved with radiation and TGFβ blockade. Thus, TGFβ is a fundamental regulator of radiation therapys ability to generate an in situ tumor vaccine. The combination of local radiation therapy with TGFβ neutralization offers a novel individualized strategy for vaccinating patients against their tumors.


Nature Communications | 2017

DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity

Claire Vanpouille-Box; Amandine Alard; Molykutty J. Aryankalayil; Yasmeen Sarfraz; Julie M. Diamond; Robert J. Schneider; Giorgio Inghirami; C. Norman Coleman; Silvia C. Formenti; Sandra Demaria

Radiotherapy is under investigation for its ability to enhance responses to immunotherapy. However, the mechanisms by which radiation induces anti-tumour T cells remain unclear. We show that the DNA exonuclease Trex1 is induced by radiation doses above 12–18 Gy in different cancer cells, and attenuates their immunogenicity by degrading DNA that accumulates in the cytosol upon radiation. Cytosolic DNA stimulates secretion of interferon-β by cancer cells following activation of the DNA sensor cGAS and its downstream effector STING. Repeated irradiation at doses that do not induce Trex1 amplifies interferon-β production, resulting in recruitment and activation of Batf3-dependent dendritic cells. This effect is essential for priming of CD8+ T cells that mediate systemic tumour rejection (abscopal effect) in the context of immune checkpoint blockade. Thus, Trex1 is an upstream regulator of radiation-driven anti-tumour immunity. Trex1 induction may guide the selection of radiation dose and fractionation in patients treated with immunotherapy.


Frontiers in Oncology | 2014

Combinations of Immunotherapy and Radiation in Cancer Therapy

R. Vatner; Benjamin T. Cooper; Claire Vanpouille-Box; Sandra Demaria; Silvia C. Formenti

The immune system has the ability to recognize and specifically reject tumors, and tumors only become clinically apparent once they have evaded immune destruction by creating an immunosuppressive tumor microenvironment. Radiotherapy (RT) can cause immunogenic tumor cell death resulting in cross-priming of tumor-specific T-cells, acting as an in situ tumor vaccine; however, RT alone rarely induces effective anti-tumor immunity resulting in systemic tumor rejection. Immunotherapy can complement RT to help overcome tumor-induced immune suppression, as demonstrated in pre-clinical tumor models. Here, we provide the rationale for combinations of different immunotherapies and RT, and review the pre-clinical and emerging clinical evidence for these combinations in the treatment of cancer.


Biomaterials | 2011

The therapeutic potential of human multipotent mesenchymal stromal cells combined with pharmacologically active microcarriers transplanted in hemi-parkinsonian rats.

Gaëtan J.-R. Delcroix; Elisa Garbayo; Laurence Sindji; Olivier Thomas; Claire Vanpouille-Box; Paul C. Schiller; Claudia N. Montero-Menei

Multipotent mesenchymal stromal cells (MSCs) raise great interest for brain cell therapy due to their ease of isolation from bone marrow, their immunomodulatory and tissue repair capacities, their ability to differentiate into neuronal-like cells and to secrete a variety of growth factors and chemokines. In this study, we assessed the effects of a subpopulation of human MSCs, the marrow-isolated adult multilineage inducible (MIAMI) cells, combined with pharmacologically active microcarriers (PAMs) in a rat model of Parkinsons disease (PD). PAMs are biodegradable and non-cytotoxic poly(lactic-co-glycolic acid) microspheres, coated by a biomimetic surface and releasing a therapeutic protein, which acts on the cells conveyed on their surface and on their microenvironment. In this study, PAMs were coated with laminin and designed to release neurotrophin 3 (NT3), which stimulate the neuronal-like differentiation of MIAMI cells and promote neuronal survival. After adhesion of dopaminergic-induced (DI)-MIAMI cells to PAMs in vitro, the complexes were grafted in the partially dopaminergic-deafferented striatum of rats which led to a strong reduction of the amphetamine-induced rotational behavior together with the protection/repair of the nigrostriatal pathway. These effects were correlated with the increased survival of DI-MIAMI cells that secreted a wide range of growth factors and chemokines. Moreover, the observed increased expression of tyrosine hydroxylase by cells transplanted with PAMs may contribute to this functional recovery.


Clinical Cancer Research | 2012

Synergy of topical Toll-Like Receptor 7 agonist with radiation and low dose cyclophosphamide in a mouse model of cutaneous breast cancer

M. Zahidunnabi Dewan; Claire Vanpouille-Box; Noriko Kawashima; Sara DiNapoli; James S. Babb; Silvia C. Formenti; Sylvia Adams; Sandra Demaria

Purpose: This study tested the hypothesis that topical Toll-like receptor (TLR) 7 agonist imiquimod promotes antitumor immunity and synergizes with other treatments in a model of skin-involving breast cancer. Experimental Design: TSA mouse breast carcinoma cells were injected s.c. into syngeneic mice. Imiquimod 5% or placebo cream was applied topically on the shaved skin overlying tumors three times/wk. In some experiments, local ionizing radiation therapy (RT) was delivered to the tumor in three fractions of 8 Gy, given on consecutive days. Cyclophosphamide was given intraperitoneally (i.p.) in one dose of 2 mg/mouse. Mice were followed for tumor growth and survival. Results: Treatment with imiquimod significantly inhibited tumor growth, an effect that was associated with increased tumor infiltration by CD11c+, CD4+, and CD8+ cells, and abolished by depletion of CD8+ cells. Administration of imiquimod in combination with RT enhanced significantly tumor response compared with either treatment alone (P < 0.005), and 11% to 66% of irradiated tumors completely regressed. Importantly, the addition of topical imiquimod also resulted in growth inhibition of a secondary tumor outside of the radiation field. Low-dose cyclophosphamide given before start of treatment with imiquimod and RT further improved tumor inhibition and reduced tumor recurrence. Mice that remained tumor-free rejected a tumorigenic inoculum of TSA cells, showing long-term immunologic memory. Conclusions: Topical imiquimod inhibits tumor growth and synergizes with RT. Addition of cyclophosphamide further increases the therapeutic effect and induces protective immunologic memory, suggesting that this combination is a promising strategy for cutaneous breast cancer metastases. Clin Cancer Res; 18(24); 6668–78. ©2012 AACR.


Seminars in Radiation Oncology | 2015

Combination of Radiotherapy and Immune Checkpoint Inhibitors

Karsten A. Pilones; Claire Vanpouille-Box; Sandra Demaria

The ability of ionizing radiation to cause cell death and inflammatory reactions has been known since the beginning of its therapeutic use in oncology. However, only recently this property of radiation has attracted the attention of immunologists seeking to induce or improve antitumor immunity. As immune checkpoint inhibitors are becoming mainstream cancer treatments, radiation oncologists have begun to observe unexpected out-of-the-field (abscopal) responses in patients receiving radiation therapy during immunotherapy. These unexpected responses were predicted by experimental work in preclinical tumor models and have clear biological bases. Accumulating experimental evidence that radiation induces an immunogenic cell death and promotes recruitment and function of T cells within the tumor microenvironment supports the hypothesis that radiation can convert the tumor into an in situ individualized vaccine. This property of radiation is key to its synergy with immune checkpoint inhibitors, antibodies targeting inhibitory receptors on T cells such as cytotoxic T lymphocyte antigen-4 and programmed death-1. By removing the obstacles hindering the activation and function of antitumor T cells, these agents benefit patients with pre-existing antitumor immunity but are ineffective in patients lacking these spontaneous responses. Radiation induces antitumor T cells complementing the activity of immune checkpoint inhibitors.


Vaccine | 2015

In situ vaccination by radiotherapy to improve responses to anti-CTLA-4 treatment

Claire Vanpouille-Box; Karsten A. Pilones; Erik Wennerberg; Silvia C. Formenti; Sandra Demaria

Targeting immune checkpoint receptors has emerged as an effective strategy to induce immune-mediated cancer regression in the subset of patients who have significant pre-existing anti-tumor immunity. For the remainder, effective anti tumor responses may require vaccination. Radiotherapy, traditionally used to achieve local tumor control, has acquired a new role, that of a partner for immunotherapy. Ionizing radiation has pro-inflammatory effects that facilitate tumor rejection. Radiation alters the tumor to enhance the concentration of effector T cells via induction of chemokines, cytokines and adhesion molecules. In parallel, radiation can induce an immunogenic death of cancer cells, promoting cross-presentation of tumor-derived antigens by dendritic cells to T cells. Newly generated anti-tumor immune responses have been demonstrated post-radiation in both murine models and occasional patients, supporting the hypothesis that the irradiated tumor can become an in situ vaccine. It is in this role, that radiation can be applied to induce anti-tumor T cells in lymphocyte-poor tumors, and possibly benefit patients who would otherwise fail to respond to immune checkpoint inhibitors. This review summarizes preclinical and clinical data demonstrating that radiation acts in concert with antibodies targeting the immune checkpoint cytotoxic T-lymphocyte antigen-4 (CTLA-4), to induce therapeutically effective anti-tumor T cell responses in tumors otherwise non responsive to anti-CTLA-4 therapy.


Radiation Research | 2014

The Optimal Partnership of Radiation and Immunotherapy: from Preclinical Studies to Clinical Translation

Sandra Demaria; Karsten A. Pilones; Claire Vanpouille-Box; Encouse B. Golden; Silvia C. Formenti

The main role of the immune system is to restore tissue homeostasis when altered by pathogenic processes, including neoplastic transformation. Immune-mediated tumor rejection has been recognized as an extrinsic tumor suppressor mechanism that tumors need to overcome to progress. By the time a tumor becomes clinically apparent it has successfully escaped immune control by establishing an immunosuppressive microenvironment. Ionizing radiation applied locally to a tumor alters these tumor-host interactions. Accumulating evidence indicates that standard therapeutic doses of radiation have the potential to recover tumor immunogenicity and convert the tumor into an in situ personalized vaccine. Radiotherapy induces an immunogenic tumor cell death promoting cross-presentation of tumor-derived antigens by dendritic cells to T cells. In addition, radiotherapy stimulates chemokine-mediated recruitment of effector T cells to the tumor, and cellular recognition and killing by T cells that is facilitated by upregulation of major histocompatibility antigens, NKG2D ligands, adhesion molecules and death receptors. Despite these effects, radiotherapy alone is only rarely capable of generating enough proinflammatory signals to sufficiently overcome suppression, as it can also activate immunosuppressive factors. However, our group and others have shown that when combined with targeted immunotherapy agents radiotherapy significantly contributes to a therapeutically effective anti-tumor immune response. To illustrate this partnership between radiation and immunotherapy we will discuss as an example our experience in preclinical models and the molecular mechanisms identified. Additionally, the clinical translation of these combinations will be discussed.


Biomaterials | 2011

Tumor eradication in rat glioma and bypass of immunosuppressive barriers using internal radiation with (188)Re-lipid nanocapsules

Claire Vanpouille-Box; Franck Lacoeuille; Camille Belloche; Nicolas Lepareur; Laurent Lemaire; Jean-Jacques LeJeune; Jean-Pierre Benoit; Philippe Menei; Olivier Couturier; Emmanuel Garcion; François Hindré

To date, glioblastoma treatments have only been palliative. In this context, locoregional drug delivery strategies, which allow for blood--brain barrier bypass and reduced systemic toxicity, are of major significance. Recent progress in nanotechnology has led to the development of colloidal carriers of radiopharmaceutics, such as lipid nanocapsules loaded with rhenium-188 (LNC(188)Re-SSS) that are implanted in the brain. In our study, we demonstrated that fractionated internal radiation using LNC(188)Re-SSS triggered remarkable survival responses in a rat orthotopic glioma model (cure rates of 83%). We also highlighted the importance of the radioactivity activity gradient obtained by combining a simple stereotactic injection (SI) with convection-enhanced delivery (CED).We assumed that the immune system played a role in the treatments efficacy on account of the overproduction of peripheral cytokines, recruitment of immune cells to the tumor site, and memory response in long-term survivor animals. Hence, nanovectorized internal radiation therapy with activity gradients stimulating immune responses may represent a new and interesting alternative for the treatment of solid tumors such as glioblastomas.


Frontiers in Immunology | 2017

Barriers to Radiation-Induced In Situ Tumor Vaccination

Erik Wennerberg; Claire Lhuillier; Claire Vanpouille-Box; Karsten A. Pilones; Elena García-Martínez; Nils-Petter Rudqvist; Silvia C. Formenti; Sandra Demaria

The immunostimulatory properties of radiation therapy (RT) have recently generated widespread interest due to preclinical and clinical evidence that tumor-localized RT can sometimes induce antitumor immune responses mediating regression of non-irradiated metastases (abscopal effect). The ability of RT to activate antitumor T cells explains the synergy of RT with immune checkpoint inhibitors, which has been well documented in mouse tumor models and is supported by observations of more frequent abscopal responses in patients refractory to immunotherapy who receive RT during immunotherapy. However, abscopal responses following RT remain relatively rare in the clinic, and antitumor immune responses are not effectively induced by RT against poorly immunogenic mouse tumors. This suggests that in order to improve the pro-immunogenic effects of RT, it is necessary to identify and overcome the barriers that pre-exist and/or are induced by RT in the tumor microenvironment. On the one hand, RT induces an immunogenic death of cancer cells associated with release of powerful danger signals that are essential to recruit and activate dendritic cells (DCs) and initiate antitumor immune responses. On the other hand, RT can promote the generation of immunosuppressive mediators that hinder DCs activation and impair the function of effector T cells. In this review, we discuss current evidence that several inhibitory pathways are induced and modulated in irradiated tumors. In particular, we will focus on factors that regulate and limit radiation-induced immunogenicity and emphasize current research on actionable targets that could increase the effectiveness of radiation-induced in situ tumor vaccination.

Collaboration


Dive into the Claire Vanpouille-Box's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Norman Coleman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge