Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Wyart is active.

Publication


Featured researches published by Claire Wyart.


Developmental Neurobiology | 2012

Optogenetics: A new enlightenment age for zebrafish neurobiology

Filippo Del Bene; Claire Wyart

Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications, new genetically encoded optical tools, fluorescent sensors, and light‐gated channels have been generated, creating the field of “optogenetics.” It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio‐temporal resolution. We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.


Frontiers in Neuroanatomy | 2014

Investigation of spinal cerebrospinal fluid-contacting neurons expressing PKD2L1: evidence for a conserved system from fish to primates

Lydia Djenoune; Hanen Khabou; Fanny Joubert; Feng B. Quan; Sophie Nunes Figueiredo; Laurence Bodineau; Filippo Del Bene; Céline Burcklé; Hervé Tostivint; Claire Wyart

Over 90 years ago, Kolmer and Agduhr identified spinal cerebrospinal fluid-contacting neurons (CSF-cNs) based on their morphology and location within the spinal cord. In more than 200 vertebrate species, they observed ciliated neurons around the central canal that extended a brush of microvilli into the cerebrospinal fluid (CSF). Although their morphology is suggestive of a primitive sensory cell, their function within the vertebrate spinal cord remains unknown. The identification of specific molecular markers for these neurons in vertebrates would benefit the investigation of their physiological roles. PKD2L1, a transient receptor potential channel that could play a role as a sensory receptor, has been found in cells contacting the central canal in mouse. In this study, we demonstrate that PKD2L1 is a specific marker for CSF-cNs in the spinal cord of mouse (Mus musculus), macaque (Macaca fascicularis) and zebrafish (Danio rerio). In these species, the somata of spinal PKD2L1+ CSF-cNs were located below or within the ependymal layer and extended an apical bulbous extension into the central canal. We found GABAergic PKD2L1-expressing CSF-cNs in all three species. We took advantage of the zebrafish embryo for its transparency and rapid development to identify the progenitor domains from which pkd2l1+ CSF-cNs originate. pkd2l1+ CSF-cNs were all GABAergic and organized in two rows—one ventral and one dorsal to the central canal. Their location and marker expression is consistent with previously described Kolmer–Agduhr cells. Accordingly, pkd2l1+ CSF-cNs were derived from the progenitor domains p3 and pMN defined by the expression of nkx2.2a and olig2 transcription factors, respectively. Altogether our results suggest that a system of CSF-cNs expressing the PKD2L1 channel is conserved in the spinal cord across bony vertebrate species.


Reviews in The Neurosciences | 2011

Let there be light: zebrafish neurobiology and the optogenetic revolution

Claire Wyart; Filippo Del Bene

Abstract Optogenetics has revolutionized the toolbox arsenal that neuroscientists now possess to investigate neuronal circuit function in intact and living animals. With a combination of light emitting ‘sensors’ and light activated ‘actuators’, we can monitor and control neuronal activity with minimal perturbation and unprecedented spatiotemporal resolution. Zebrafish neuronal circuits represent an ideal system to apply an optogenetic based analysis owing to its transparency, relatively small size and amenability to genetic manipulation. In this review, we describe some of the most recent advances in the development and applications of optogenetic sensors (i.e., genetically encoded calcium indicators and voltage sensors) and actuators (i.e., light activated ion channels and ion pumps). We focus mostly on the tools that have already been successfully applied in zebrafish and on those that show the greatest potential for the future. We also describe crucial technical aspects to implement optogenetics in zebrafish including strategies to drive a high level of transgene expression in defined neuronal populations, and recent optical advances that allow the precise spatiotemporal control of sample illumination.


Nature Communications | 2016

CSF-contacting neurons regulate locomotion by relaying mechanical stimuli to spinal circuits

Urs Lucas Böhm; Andrew Prendergast; Lydia Djenoune; Sophie Nunes Figueiredo; Johanna Gomez; Caleb Stokes; Sonya Kaiser; Maximilliano Suster; Koichi Kawakami; Marine Charpentier; Jean-Paul Concordet; Rio Jp; Filippo Del Bene; Claire Wyart

Throughout vertebrates, cerebrospinal fluid-contacting neurons (CSF-cNs) are ciliated cells surrounding the central canal in the ventral spinal cord. Their contribution to modulate locomotion remains undetermined. Recently, we have shown CSF-cNs modulate locomotion by directly projecting onto the locomotor central pattern generators (CPGs), but the sensory modality these cells convey to spinal circuits and their relevance to innate locomotion remain elusive. Here, we demonstrate in vivo that CSF-cNs form an intraspinal mechanosensory organ that detects spinal bending. By performing calcium imaging in moving animals, we show that CSF-cNs respond to both passive and active bending of the spinal cord. In mutants for the channel Pkd2l1, CSF-cNs lose their response to bending and animals show a selective reduction of tail beat frequency, confirming the central role of this feedback loop for optimizing locomotion. Altogether, our study reveals that CSF-cNs constitute a mechanosensory organ operating during locomotion to modulate spinal CPGs.


Current Biology | 2015

State-Dependent Modulation of Locomotion by GABAergic Spinal Sensory Neurons

Kevin Fidelin; Lydia Djenoune; Caleb Stokes; Andrew Prendergast; Johanna Gomez; Audrey Baradel; Filippo Del Bene; Claire Wyart

The cerebrospinal fluid (CSF) constitutes an interface through which chemical cues can reach and modulate the activity of neurons located at the epithelial boundary within the entire nervous system. Here, we investigate the role and functional connectivity of a class of GABAergic sensory neurons contacting the CSF in the vertebrate spinal cord and referred to as CSF-cNs. The remote activation of CSF-cNs was shown to trigger delayed slow locomotion in the zebrafish larva, suggesting that these cells modulate components of locomotor central pattern generators (CPGs). Combining anatomy, electrophysiology, and optogenetics in vivo, we show that CSF-cNs form active GABAergic synapses onto V0-v glutamatergic interneurons, an essential component of locomotor CPGs. We confirmed that activating CSF-cNs at rest induced delayed slow locomotion in the fictive preparation. In contrast, the activation of CSF-cNs promptly inhibited ongoing slow locomotion. Moreover, selective activation of rostral CSF-cNs during ongoing activity disrupted rostrocaudal propagation of descending excitation along the spinal cord, indicating that CSF-cNs primarily act at the premotor level. Altogether, our results demonstrate how a spinal GABAergic sensory neuron can tune the excitability of locomotor CPGs in a state-dependent manner by projecting onto essential components of the excitatory premotor pool.


Nature Communications | 2016

Three-dimensional spatiotemporal focusing of holographic patterns

Oscar Hernandez; Eirini Papagiakoumou; Dimitrii Tanese; Kevin Fidelin; Claire Wyart; Valentina Emiliani

Two-photon excitation with temporally focused pulses can be combined with phase-modulation approaches, such as computer-generated holography and generalized phase contrast, to efficiently distribute light into two-dimensional, axially confined, user-defined shapes. Adding lens-phase modulations to 2D-phase holograms enables remote axial pattern displacement as well as simultaneous pattern generation in multiple distinct planes. However, the axial confinement linearly degrades with lateral shape area in previous reports where axially shifted holographic shapes were not temporally focused. Here we report an optical system using two spatial light modulators to independently control transverse- and axial-target light distribution. This approach enables simultaneous axial translation of single or multiple spatiotemporally focused patterns across the sample volume while achieving the axial confinement of temporal focusing. We use the systems capability to photoconvert tens of Kaede-expressing neurons with single-cell resolution in live zebrafish larvae.


eLife | 2015

Deletion of a kinesin I motor unmasks a mechanism of homeostatic branching control by neurotrophin-3

Thomas O. Auer; Tong Xiao; Valérie Bercier; Christoph Gebhardt; Karine Duroure; Jean-Paul Concordet; Claire Wyart; Maximiliano L. Suster; Koichi Kawakami; Joachim Wittbrodt; Herwig Baier; Filippo Del Bene

Development and function of highly polarized cells such as neurons depend on microtubule-associated intracellular transport, but little is known about contributions of specific molecular motors to the establishment of synaptic connections. In this study, we investigated the function of the Kinesin I heavy chain Kif5aa during retinotectal circuit formation in zebrafish. Targeted disruption of Kif5aa does not affect retinal ganglion cell differentiation, and retinal axons reach their topographically correct targets in the tectum, albeit with a delay. In vivo dynamic imaging showed that anterograde transport of mitochondria is impaired, as is synaptic transmission. Strikingly, disruption of presynaptic activity elicits upregulation of Neurotrophin-3 (Ntf3) in postsynaptic tectal cells. This in turn promotes exuberant branching of retinal axons by signaling through the TrkC receptor (Ntrk3). Thus, our study has uncovered an activity-dependent, retrograde signaling pathway that homeostatically controls axonal branching. DOI: http://dx.doi.org/10.7554/eLife.05061.001


PLOS ONE | 2015

Comparative Distribution and In Vitro Activities of the Urotensin II-Related Peptides URP1 and URP2 in Zebrafish: Evidence for Their Colocalization in Spinal Cerebrospinal Fluid-Contacting Neurons

Feng B. Quan; Christophe Dubessy; Sonya Galant; N. B. Kenigfest; Lydia Djenoune; Jérôme Leprince; Claire Wyart; Isabelle Lihrmann; Hervé Tostivint

Urotensin II (UII) is an evolutionarily conserved neuropeptide initially isolated from teleost fish on the basis of its smooth muscle-contracting activity. Subsequent studies have demonstrated the occurrence of several UII-related peptides (URPs), such that the UII family is now known to include four paralogue genes called UII, URP, URP1 and URP2. These genes probably arose through the two rounds of whole genome duplication that occurred during early vertebrate evolution. URP has been identified both in tetrapods and teleosts. In contrast, URP1 and URP2 have only been observed in ray-finned and cartilaginous fishes, suggesting that both genes were lost in the tetrapod lineage. In the present study, the distribution of urp1 mRNA compared to urp2 mRNA is reported in the central nervous system of zebrafish. In the spinal cord, urp1 and urp2 mRNAs were mainly colocalized in the same cells. These cells were also shown to be GABAergic and express the gene encoding the polycystic kidney disease 2-like 1 (pkd2l1) channel, indicating that they likely correspond to cerebrospinal fluid-contacting neurons. In the hindbrain, urp1-expressing cells were found in the intermediate reticular formation and the glossopharyngeal-vagal motor nerve nuclei. We also showed that synthetic URP1 and URP2 were able to induce intracellular calcium mobilization in human UII receptor (hUT)-transfected CHO cells with similar potencies (pEC50=7.99 and 7.52, respectively) albeit at slightly lower potencies than human UII and mammalian URP (pEC50=9.44 and 8.61, respectively). The functional redundancy of URP1 and URP2 as well as the colocalization of their mRNAs in the spinal cord suggest the robustness of this peptidic system and its physiological importance in zebrafish.


Biomedical Optics Express | 2016

Remote z-scanning with a macroscopic voice coil motor for fast 3D multiphoton laser scanning microscopy

Peter Rupprecht; Andrew Prendergast; Claire Wyart; Rainer W. Friedrich

There is a high demand for 3D multiphoton imaging in neuroscience and other fields but scanning in axial direction presents technical challenges. We developed a focusing technique based on a remote movable mirror that is conjugate to the specimen plane and translated by a voice coil motor. We constructed cost-effective z-scanning modules from off-the-shelf components that can be mounted onto standard multiphoton laser scanning microscopes to extend scan patterns from 2D to 3D. Systems were designed for large objectives and provide high resolution, high speed and a large z-scan range (>300 μm). We used these systems for 3D multiphoton calcium imaging in the adult zebrafish brain and measured odor-evoked activity patterns across >1500 neurons with single-neuron resolution and high signal-to-noise ratio.


Current Opinion in Neurobiology | 2014

Inhibition and motor control in the developing zebrafish spinal cord.

Kevin Fidelin; Claire Wyart

Vertebrate locomotion relies on oscillatory activity along the spinal cord. Inhibition is involved in controlling the alternation of activity between each side and contributes in modulating propagation and termination of locomotor activity. Spinal inhibitory neurons are thought to regulate these mechanisms but the exact contribution of specific cell types remains difficult to tackle during active locomotion. In the past two decades, use of the transparent zebrafish larva has enabled morphological, functional, and genetic characterization of specific inhibitory spinal neurons. A wide range of new optical tools has been developed to monitor and to manipulate the activity of genetically targeted spinal populations. Combining these techniques with conventional electrophysiology will provide a better understanding of the contribution of inhibitory spinal interneurons in regulating essential features of locomotor patterns.

Collaboration


Dive into the Claire Wyart's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng B. Quan

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge