Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claire Y.-H. Huang is active.

Publication


Featured researches published by Claire Y.-H. Huang.


Nature Genetics | 2007

A single positively selected West Nile viral mutation confers increased virogenesis in American crows

Aaron C. Brault; Claire Y.-H. Huang; Stanley A. Langevin; Richard M. Kinney; Richard A. Bowen; Wanichaya N. Ramey; Nicholas A. Panella; Edward C. Holmes; Ann M. Powers; Barry R. Miller

West Nile virus (WNV), first recognized in North America in 1999, has been responsible for the largest arboviral epiornitic and epidemic of human encephalitis in recorded history. Despite the well-described epidemiological patterns of WNV in North America, the basis for the emergence of WNV-associated avian pathology, particularly in the American crow (AMCR) sentinel species, and the large scale of the North American epidemic and epiornitic is uncertain. We report here that the introduction of a T249P amino acid substitution in the NS3 helicase (found in North American WNV) in a low-virulence strain was sufficient to generate a phenotype highly virulent to AMCRs. Furthermore, comparative sequence analyses of full-length WNV genomes demonstrated that the same site (NS3-249) was subject to adaptive evolution. These phenotypic and evolutionary results provide compelling evidence for the positive selection of a mutation encoding increased viremia potential and virulence in the AMCR sentinel bird species.


Journal of Virology | 2005

Envelope Protein Glycosylation Status Influences Mouse Neuroinvasion Phenotype of Genetic Lineage 1 West Nile Virus Strains

David W. C. Beasley; Melissa C. Whiteman; Shuliu Zhang; Claire Y.-H. Huang; Bradley S. Schneider; Darci R. Smith; Gregory D. Gromowski; Stephen Higgs; Richard M. Kinney; Alan D. T. Barrett

ABSTRACT The introduction of West Nile virus (WNV) into North America has been associated with relatively high rates of neurological disease and death in humans, birds, horses, and some other animals. Previous studies identified strains in both genetic lineage 1 and genetic lineage 2, including North American isolates of lineage 1, that were highly virulent in a mouse neuroinvasion model, while other strains were avirulent or significantly attenuated (D. W. C. Beasley, L. Li, M. T. Suderman, and A. D. T. Barrett, Virology 296:17-23, 2002). To begin to elucidate the basis for these differences, we compared a highly virulent New York 1999 (NY99) isolate with a related Old World lineage 1 strain, An4766 (ETH76a), which is attenuated for mouse neuroinvasion. Genomic sequencing of ETH76a revealed a relatively small number of nucleotide (5.1%) and amino acid (0.6%) differences compared with NY99. These differences were located throughout the genome and included five amino acid differences in the envelope protein gene. Substitution of premembrane and envelope genes of ETH76a into a NY99 infectious clone backbone yielded a virus with altered in vitro growth characteristics and a mouse virulence phenotype comparable to ETH76a. Further site-specific mutagenesis studies revealed that the altered phenotype was primarily mediated via loss of envelope protein glycosylation and that this was associated with altered stability of the virion at mildly acidic pH. Therefore, the enhanced virulence of North American WNV strains compared with other Old World lineage 1 strains is at least partly mediated by envelope protein glycosylation.


Journal of Virology | 2000

Chimeric Dengue Type 2 (Vaccine Strain PDK-53)/Dengue Type 1 Virus as a Potential Candidate Dengue Type 1 Virus Vaccine

Claire Y.-H. Huang; Siritorn Butrapet; Dennis J. Pierro; Gwong-Jen J. Chang; Ann R. Hunt; Natth Bhamarapravati; Duane J. Gubler; Richard M. Kinney

ABSTRACT We constructed chimeric dengue type 2/type 1 (DEN-2/DEN-1) viruses containing the nonstructural genes of DEN-2 16681 virus or its vaccine derivative, strain PDK-53, and the structural genes (encoding capsid protein, premembrane protein, and envelope glycoprotein) of DEN-1 16007 virus or its vaccine derivative, strain PDK-13. We previously reported that attenuation markers of DEN-2 PDK-53 virus were encoded by genetic loci located outside the structural gene region of the PDK-53 virus genome. Chimeric viruses containing the nonstructural genes of DEN-2 PDK-53 virus and the structural genes of the parental DEN-1 16007 virus retained the attenuation markers of small plaque size and temperature sensitivity in LLC-MK2 cells, less efficient replication in C6/36 cells, and attenuation for mice. These chimeric viruses elicited higher mouse neutralizing antibody titers against DEN-1 virus than did the candidate DEN-1 PDK-13 vaccine virus or chimeric DEN-2/DEN-1 viruses containing the structural genes of the PDK-13 virus. Mutations in the envelope protein of DEN-1 PDK-13 virus affected in vitro phenotype and immunogenicity in mice. The current PDK-13 vaccine is the least efficient of the four Mahidol candidate DEN virus vaccines in human trials. The chimeric DEN-2/DEN-1 virus might be a potential DEN-1 virus vaccine candidate. This study indicated that the infectious clones derived from the candidate DEN-2 PDK-53 vaccine are promising attenuated vectors for development of chimeric flavivirus vaccines.


Journal of Virology | 2003

Dengue 2 PDK-53 Virus as a Chimeric Carrier for Tetravalent Dengue Vaccine Development

Claire Y.-H. Huang; Siritorn Butrapet; Kiyotaka R. Tsuchiya; Natth Bhamarapravati; Duane J. Gubler; Richard M. Kinney

ABSTRACT Attenuation markers of the candidate dengue 2 (D2) PDK-53 vaccine virus are encoded by mutations that reside outside of the structural gene region of the genome. We engineered nine dengue virus chimeras containing the premembrane (prM) and envelope (E) genes of wild-type D1 16007, D3 16562, or D4 1036 virus within the genetic backgrounds of wild-type D2 16681 virus and the two genetic variants (PDK53-E and PDK53-V) of the D2 PDK-53 vaccine virus. Expression of the heterologous prM-E genes in the genetic backgrounds of the two D2 PDK-53 variants, but not that of wild-type D2 16681 virus, resulted in chimeric viruses that retained PDK-53 characteristic phenotypic markers of attenuation, including small plaque size and temperature sensitivity in LLC-MK2 cells, limited replication in C6/36 cells, and lack of neurovirulence in newborn ICR mice. Chimeric D2/1, D2/3, and D2/4 viruses replicated efficiently in Vero cells and were immunogenic in AG129 mice. Chimeric D2/1 viruses protected adult AG129 mice against lethal D1 virus challenge. Two tetravalent virus formulations, comprised of either PDK53-E- or PDK53-V-vectored viruses, elicited neutralizing antibody titers in mice against all four dengue serotypes. These antibody titers were similar to the titers elicited by monovalent immunizations, suggesting that viral interference did not occur in recipients of the tetravalent formulations. The results of this study demonstrate that the unique attenuation loci of D2 PDK-53 virus make it an attractive vector for the development of live attenuated flavivirus vaccines.


Journal of Virology | 2000

Attenuation Markers of a Candidate Dengue Type 2 Vaccine Virus, Strain 16681 (PDK-53), Are Defined by Mutations in the 5′ Noncoding Region and Nonstructural Proteins 1 and 3

Siritorn Butrapet; Claire Y.-H. Huang; Dennis J. Pierro; Natth Bhamarapravati; Duane J. Gubler; Richard M. Kinney

ABSTRACT The genome of a candidate dengue type 2 (DEN-2) vaccine virus, strain PDK-53, differs from its DEN-2 16681 parent by nine nucleotides. Using infectious cDNA clones, we constructed 18 recombinant 16681/PDK-53 viruses to analyze four 16681-to-PDK-53 mutations, including 5′ noncoding region (5′NC)-57 C-to-T, premembrane (prM)-29 Asp-to-Val (the only mutation that occurs in the structural proteins), nonstructural protein 1 (NS1)-53 Gly-to-Asp, and NS3-250 Glu-to-Val. The viruses were studied for plaque size, growth rate, and temperature sensitivity in LLC-MK2 cells, growth rate in C6/36 cells, and neurovirulence in newborn mice. All of the viruses replicated to peak titers of 107.3 PFU/ml or greater in LLC-MK2 cells. The crippled replication of PDK-53 virus in C6/36 cells and its attenuation for mice were determined primarily by the 5′NC-57-T and NS1-53-Asp mutations. The temperature sensitivity of PDK-53 virus was attributed to the NS1-53-Asp and NS3-250-Val mutations. The 5′NC-57, NS1-53, and NS3-250 loci all contributed to the small-plaque phenotype of PDK-53 virus. Reversions at two or three of these loci in PDK-53 virus were required to reconstitute the phenotypic characteristics of the parental 16681 virus. The prM-29 locus had little or no effect on viral phenotype. Sequence analyses showed that PDK-53 virus is genetically identical to PDK-45 virus. Restriction of the three major genetic determinants of attenuation markers to nonstructural genomic regions makes the PDK-53 virus genotype attractive for the development of chimeric DEN virus vaccine candidates.


Vaccine | 2011

Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever.

Jorge E. Osorio; Claire Y.-H. Huang; Richard M. Kinney; Dan T. Stinchcomb

Dengue. virus infection is the leading arboviral cause of disease worldwide. A vaccine is being developed based on the attenuated DEN-2 virus, DEN-2 PDK-53. In this review, we summarize the characteristics of the parent DEN-2 PDK-53 strain as well as the chimeric viruses containing the prM and E genes of DEN-1, DEN-3 or DEN-4 virus in the genetic backbone of the DEN-2 PDK-53 virus (termed DENVax). Tetravalent DENVax formulations containing cloned, fully sequenced isolates of the DEN-2 PDK-53 virus and the three chimeras have been evaluated for safety and efficacy in preclinical animal models. Based on the safety, immunogenicity and efficacy in preclinical studies, Phase 1 clinical testing of DENVax has been initiated.


Journal of Virology | 2005

Inhibition of Dengue Virus Serotypes 1 to 4 in Vero Cell Cultures with Morpholino Oligomers

Richard M. Kinney; Claire Y.-H. Huang; Becky C. Rose; Andrew D. Kroeker; Theo W. Dreher; Patrick L. Iversen; David A. Stein

ABSTRACT Five dengue (DEN) virus-specific R5F2R4 peptide-conjugated phosphorodiamidate morpholino oligomers (P4-PMOs) were evaluated for their ability to inhibit replication of DEN virus serotype 2 (DEN-2 virus) in mammalian cell culture. Initial growth curves of DEN-2 virus 16681 were obtained in Vero cells incubated with 20 μM P4-PMO compounds. At 6 days after infection, a P4-PMO targeting the 3′-terminal nucleotides of the DEN-2 virus genome and a random-sequence P4-PMO showed relatively little suppression of DEN-2 virus titer (0.1 and 0.9 log10, respectively). P4-PMOs targeting the AUG translation start site region of the single open reading frame and the 5′ cyclization sequence region had moderate activity, generating 1.6- and 1.8-log10 reductions. Two P4-PMO compounds, 5′SL and 3′CS (targeting the 5′-terminal nucleotides and the 3′ cyclization sequence region, respectively), were highly efficacious, each reducing the viral titer by greater than 5.7 log10 compared to controls at 6 days after infection with DEN-2 virus. Further experiments showed that 5′SL and 3′CS inhibited DEN-2 virus replication in a dose-dependent and sequence-specific manner. Treatment with 10 μM 3′CS reduced the titers of all four DEN virus serotypes, i.e., DEN-1 (strain 16007), DEN-2 (16681), DEN-3 (16562), and DEN-4 (1036) viruses by over 4 log10, in most cases to below detectable limits. The extent of 3′CS efficacy was affected by the timing of compound application in relation to viral infection of the cells. The 5′SL and 3′CS P4-PMOs did not suppress the replication of West Nile virus NY99 in Vero cells. These data indicate that further evaluation of the 5′SL and 3′CS compounds as potential DEN virus therapeutics is warranted.


Intervirology | 2001

Development of New Vaccines against Dengue Fever and Japanese Encephalitis

Richard M. Kinney; Claire Y.-H. Huang

Mosquito-borne dengue (DEN) and Japanese encephalitis (JE) viruses are the leading causes of arthropod-transmitted viral disease in humans. A licensed tetravalent vaccine that provides effective, long-term immunity against all four serotypes of DEN virus is needed, but is currently unavailable. Improvements to currently available JE vaccines are also needed. Past and recent strategies for the development of new DEN and JE vaccines include inactivated and live attenuated viruses, engineered viruses and chimeric viruses derived from infectious cDNA clones of DEN or JE virus, recombinant poxviruses, recombinant baculoviruses, protein expression in Escherichia coli, and naked DNA vaccines. This report summarizes some of the recent developments in DEN and JE vaccinology, particularly vaccine strategies that involve live attenuated viruses, engineered viruses derived from infectious cDNA clones, and naked DNA vaccines.


Lancet Infectious Diseases | 2014

Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study

Jorge E. Osorio; Iván Darío Vélez; Cynthia A. Thomson; Liliana Lopez; Alejandra Jiménez; Aurelia Haller; Shawn Silengo; Jaclyn Scott; Karen L. Boroughs; Janae L. Stovall; Betty E. Luy; John Arguello; Mark E Beatty; Joseph D. Santangelo; Gilad Gordon; Claire Y.-H. Huang; Dan T. Stinchcomb

BACKGROUND Dengue virus is the most serious mosquito-borne viral threat to public health and no vaccines or antiviral therapies are approved for dengue fever. The tetravalent DENVax vaccine contains a molecularly characterised live attenuated dengue serotype-2 virus (DENVax-2) and three recombinant vaccine viruses expressing the prM and E structural genes for serotypes 1, 3, and 4 in the DENVax-2 genetic backbone. We aimed to assess the safety and immunogenicity of tetravalent DENVax formulations. METHODS We undertook a randomised, double-blind, phase 1, dose-escalation trial between Oct 11, 2011, and Nov 9, 2011, in the Rionegro, Antioquia, Colombia. The first cohort of participants (aged 18-45 years) were randomly assigned centrally, via block randomisation, to receive a low-dose formulation of DENvax, or placebo, by either subcutaneous or intradermal administration. After a safety assessment, participants were randomly assigned to receive a high-dose DENVax formulation, or placebo, by subcutaneous or intradermal administration. Group assignment was not masked from study pharmacists, but allocation was concealed from participants, nurses, and investigators. Primary endpoints were frequency and severity of injection-site and systemic reactions within 28 days of each vaccination. Secondary endpoints were the immunogenicity of DENVax against all four dengue virus serotypes, and the viraemia due to each of the four vaccine components after immunisation. Analysis was by intention to treat for safety and per protocol for immunogenicity. Because of the small sample size, no detailed comparison of adverse event rates were warranted. The trial is registered with ClinicalTrials.gov, number NCT01224639. FINDINGS We randomly assigned 96 patients to one of the four study groups: 40 participants (42%) received low-dose vaccine and eight participants (8%) received placebo in the low-dose groups; 39 participants (41%) received high-dose vaccine, with nine (9%) participants assigned to receive placebo. Both formulations were well tolerated with mostly mild and transient local or systemic reactions. No clinically meaningful differences were recorded in the overall incidence of local and systemic adverse events between patients in the vaccine and placebo groups; 68 (86%) of 79 participants in the vaccine groups had solicited systemic adverse events compared with 13 (76%) of 17 of those in the placebo groups. By contrast, 67 participants (85%) in the vaccine group had local solicited reactions compared with five (29%) participants in the placebo group. Immunisation with either high-dose or low-dose DENVax formulations induced neutralising antibody responses to all four dengue virus serotypes; 30 days after the second dose, 47 (62%) of 76 participants given vaccine seroconverted to all four serotypes and 73 (96%) participants seroconverted to three or more dengue viruses. Infectious DENVax viruses were detected in only ten (25%) of 40 participants in the low-dose group and 13 (33%) of 39 participants in the high-dose group. INTERPRETATION Our findings emphasise the acceptable tolerability and immunogenicity of the tetravalent DENVax formulations in healthy, flavivirus-naive adults. Further clinical testing of DENVax in different age groups and in dengue-endemic areas is warranted. FUNDING Takeda Vaccines.


American Journal of Tropical Medicine and Hygiene | 2011

Efficacy of a tetravalent chimeric dengue vaccine (DENVax) in Cynomolgus macaques.

Jorge E. Osorio; Joseph N. Brewoo; Shawn J. Silengo; John Arguello; Ioana R. Moldovan; Magdalena Tary-Lehmann; Tim D. Powell; Jill A. Livengood; Richard M. Kinney; Claire Y.-H. Huang; Dan T. Stinchcomb

Three tetravalent formulations of chimeric dengue (DENVax) viruses containing the pre-membrane and envelope genes of serotypes 1-4 expressed by the attenuated DENV-2 PDK-53 genome were tested for safety, immunogenicity, and efficacy in cynomolgus macaques (Macaca fascicularis). Subcutaneous injection of the DENVax formulations was well-tolerated. Low levels of viremia of only one of the four vaccine viruses were detected yet virus neutralizing antibody titers were induced against all four dengue virus serotypes after one or two administrations of vaccine. All animals immunized with the high-dose formulation were protected from viremia, and all immunized animals were completely protected from DENV-3 and DENV-4 challenge. A lower dose of DENVax formulation partially protected animals from DENV-1 or DENV-2 challenge. In contrast, all control animals developed high levels of viremia for multiple days after challenge with DENV 1-4. This study highlights the immunogenicity and efficacy of the tetravalent DENVax formulations in nonhuman primates.

Collaboration


Dive into the Claire Y.-H. Huang's collaboration.

Top Co-Authors

Avatar

Richard M. Kinney

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Dan T. Stinchcomb

Takeda Pharmaceutical Company

View shared research outputs
Top Co-Authors

Avatar

Shawn J. Silengo

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Alan D. T. Barrett

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Amanda E. Calvert

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

David W. C. Beasley

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

John T. Roehrig

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Betty E. Luy

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Aaron C. Brault

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Carol D. Blair

Colorado State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge