Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara A. Fuchsman is active.

Publication


Featured researches published by Clara A. Fuchsman.


Applied and Environmental Microbiology | 2006

Diversity and distribution of Planctomycetes and related bacteria in the suboxic zone of the Black Sea.

John B. Kirkpatrick; Brian B. Oakley; Clara A. Fuchsman; Sujatha Srinivasan; James T. Staley; James W. Murray

ABSTRACT Samples from six depths of the Black Seas suboxic zone were analyzed for 16S rRNA gene sequence information. A gradient in phylotype diversity was found. The distributions of known anaerobic ammonium oxidation (anammox) bacteria, many unknown Planctomycetes, and other phylotypes were examined in relation to the local nutrient and redox conditions.


Applied and Environmental Microbiology | 2006

Whole-Genome Reciprocal BLAST Analysis Reveals that Planctomycetes Do Not Share an Unusually Large Number of Genes with Eukarya and Archaea†

Clara A. Fuchsman; Gabrielle Rocap

ABSTRACT The genome sequences of Rhodopirellula baltica, formerly Pirellula sp. strain 1, Blastopirellula marina, Gemmata obscuriglobus, and Kuenenia stuttgartiensis were used in a series of pairwise reciprocal best-hit analyses to evaluate the contested evolutionary position of Planctomycetes. Contrary to previous reports which suggested that R. baltica had a high percentage of genes with closest matches to Archaea and Eukarya, we show here that these Planctomycetes do not share an unusually large number of genes with the Archaea or Eukarya, compared with other Bacteria. Thus, best-hit analyses may assign phylogenetic affinities incorrectly if close relatives are absent from the sequence database.


Global Biogeochemical Cycles | 2015

Ammonia and nitrite oxidation in the Eastern Tropical North Pacific

Xuefeng Peng; Clara A. Fuchsman; Amal Jayakumar; Sergey Oleynik; Willm Martens-Habbena; Allan H. Devol; Bess B. Ward

Nitrification plays a key role in the marine nitrogen (N) cycle, including in oceanic oxygen minimum zones (OMZs), which are hot spots for denitrification and anaerobic ammonia oxidation (anammox). Recent evidence suggests that nitrification links the source (remineralized organic matter) and sink (denitrification and anammox) of fixed N directly in the steep oxycline in the OMZs. We performed shipboard incubations with 15N tracers to characterize the depth distribution of nitrification in the Eastern Tropical North Pacific (ETNP). Additional experiments were conducted to investigate photoinhibition. Allylthiourea (ATU) was used to distinguish the contribution of archaeal and bacterial ammonia oxidation. The abundance of archaeal and β-proteobacterial ammonia monooxygenase gene subunit A (amoA) was determined by quantitative polymerase chain reaction. The rates of ammonia and nitrite oxidation showed distinct subsurface maxima, with the latter slightly deeper than the former. The ammonia oxidation maximum coincided with the primary nitrite concentration maximum, archaeal amoA gene maximum, and the subsurface nitrous oxide maximum. Negligible rates of ammonia oxidation were found at anoxic depths, where high rates of nitrite oxidation were measured. Archaeal amoA gene abundance was generally 1 to 2 orders of magnitude higher than bacterial amoA gene abundance, and inhibition of ammonia-oxidizing bacteria with 10 μM ATU did not affect ammonia oxidation rates, indicating the dominance of archaea in ammonia oxidation. These results depict highly dynamic activities of ammonia and nitrite oxidation in the oxycline of the ETNP OMZ.


Journal of Geophysical Research | 2016

Revisiting nitrification in the Eastern Tropical South Pacific: A focus on controls

Xuefeng Peng; Clara A. Fuchsman; Amal Jayakumar; Mark J. Warner; Allan H. Devol; Bess B. Ward

Nitrification, the oxidation of ammonium ( NH4+) to nitrite ( NO2−) and to nitrate ( NO3−), is a component of the nitrogen (N) cycle internal to the fixed N pool. In oxygen minimum zones (OMZs), which are hotspots for oceanic fixed N loss, nitrification plays a key role because it directly supplies substrates for denitrification and anaerobic ammonia oxidation (anammox), and may compete for substrates with these same processes. However, the control of oxygen and substrate concentrations on nitrification are not well understood. We performed onboard incubations with 15N-labeled substrates to measure rates of NH4+ and NO2− oxidation in the eastern tropical South Pacific (ETSP). The spatial and depth distributions of NH4+ and NO2− oxidation rates were primarily controlled by NH4+ and NO2− availability, oxygen concentration, and light. In the euphotic zone, nitrification was partially photoinhibited. In the anoxic layer, NH4+ oxidation was negligible or below detection, but high rates of NO2− oxidation were observed. NH4+ oxidation displayed extremely high affinity for both NH4+ and oxygen. The positive linear correlations between NH4+ oxidation rates and in situ NH4+ concentrations and ammonia monooxygenase subunit A (amoA) gene abundances in the upper oxycline indicate that the natural assemblage of ammonia oxidizers responds to in situ NH4+ concentrations or supply by adjusting their population size, which determines the NH4+ oxidation potential. The depth distribution of archaeal and bacterial amoA gene abundances and N2O concentration, along with independently reported simultaneous direct N2O production rate measurements, suggests that AOA were predominantly responsible for NH4+ oxidation, which was a major source of N2O production at oxygen concentrations > 5 µM.


Frontiers in Microbiology | 2012

Stimulation of Autotrophic Denitrification by Intrusions of the Bosporus Plume into the Anoxic Black Sea

Clara A. Fuchsman; James W. Murray; James T. Staley

Autotrophic denitrification was measured in the southwestern coastal Black Sea, where the Bosporus Plume injects oxidized chemical species (especially O2 and NO3−) into the oxic, suboxic, and anoxic layers. Prominent oxygen intrusions caused an overlap of NOx− and sulfide at the same station where autotrophic denitrification activity was detected with incubation experiments. Several bacteria that have been proposed to oxidize sulfide in other low oxygen environments were found in the Black Sea including SUP05, Sulfurimonas, Arcobacter, and BS-GSO2. Comparison of TRFLP profiles from this mixing zone station and the Western Gyre (a station not affected by the Bosporus Plume) indicate the greatest relative abundance of Sulfurimonas and Arcobacter at the appropriate depths at the mixing zone station. The autotrophic gammaproteobacterium BS-GSO2 correlated with ammonium fluxes rather than with sulfide fluxes and the maximum in SUP05 peak height was shallower than the depths where autotrophic denitrification was detected. Notably, anammox activity was not detected at the mixing zone station, though low levels of DNA from the anammox bacteria Candidatus Scalindua were present. These results provide evidence for a modified ecosystem with different N2 production pathways in the southwest coastal region compared to that found in the rest of the Black Sea. Moreover, the same Sulfurimonas phylotype (BS139) was previously detected on >30 μm particles in the suboxic zone of the Western Gyre along with DNA of potential sulfate reducers, so it is possible that particle-attached autotrophic denitrification may be an overlooked N2 production pathway in the central Black Sea as well.


Frontiers in Microbiology | 2012

Concurrent activity of anammox and denitrifying bacteria in the Black Sea

John B. Kirkpatrick; Clara A. Fuchsman; Evgeniy Yakushev; James T. Staley; James W. Murray

After the discovery of ANaerobic AMMonium OXidation (anammox) in the environment, the role of heterotrophic denitrification as the main marine pathway for fixed N loss has been questioned. A 3 part, 15 month time series investigating nitrite reductase (nirS) mRNA transcripts at a single location in the Black Sea was conducted in order to better understand the activity of anammox and denitrifying bacteria. Here we show that both of these groups were active, as well as being concurrent in the lower suboxic zone over this time span. Their distributions, however, differed in that only expression of denitrification-type nirS was seen in the upper suboxic zone, where geochemistry was variable. Depth profiles covering the suboxic zone showed that the four groups of anammox-type sequences were expressed consistently in the lower suboxic zone, and were consistent with anammox 16 S rDNA gene profiles. By contrast, denitrifier-type nirS sequence groups were mixed; some groups exhibited consistent expression in the lower suboxic zone, while others appeared less consistent. Co-occurrence of both anammox and denitrifier expression was common and ongoing. Both types of transcripts were also found in samples with low concentrations of sulfide (>2 μM). Six major groups of denitrifier-type nirS transcripts were identified, and several groups of denitrifier-type nirS transcripts were closely related to sequences from the Baltic Sea. An increase in denitrifier-type nirS transcript diversity and depth range in October 2007 corresponded to a small increase in mixed layer net community productivity (NCP) as measured by O2/Ar gas ratios, as well as to an increase in N2 concentrations in the suboxic zone. Taken together, the variations in expression patterns between anammox and denitrification provide one possible explanation as to how near instantaneous rate measurements, such as isotope spike experiments, may regularly detect anammox activity but underreport denitrification.


Frontiers in Microbiology | 2017

Niche Partitioning of the N Cycling Microbial Community of an Offshore Oxygen Deficient Zone

Clara A. Fuchsman; Allan H. Devol; Jaclyn K. Saunders; Cedar McKay; Gabrielle Rocap

Microbial communities in marine oxygen deficient zones (ODZs) are responsible for up to half of marine N loss through conversion of nutrients to N2O and N2. This N loss is accomplished by a consortium of diverse microbes, many of which remain uncultured. Here, we characterize genes for all steps in the anoxic N cycle in metagenomes from the water column and >30 μm particles from the Eastern Tropical North Pacific (ETNP) ODZ. We use an approach that allows for both phylogenetic identification and semi-quantitative assessment of gene abundances from individual organisms, and place these results in context of chemical measurements and rate data from the same location. Denitrification genes were enriched in >30 μm particles, even in the oxycline, while anammox bacteria were not abundant on particles. Many steps in denitrification were encoded by multiple phylotypes with different distributions. Notably three N2O reductases (nosZ), each with no cultured relative, inhabited distinct niches; one was free-living, one dominant on particles and one had a C terminal extension found in autotrophic S-oxidizing bacteria. At some depths >30% of the community possessed nitrite reductase nirK. A nirK OTU linked to SAR11 explained much of this abundance. The only bacterial gene found for NO reduction to N2O in the ODZ was a form of qnorB related to the previously postulated “nitric oxide dismutase,” hypothesized to produce N2 directly while oxidizing methane. However, similar qnorB-like genes are also found in the published genomes of many bacteria that do not oxidize methane, and here the qnorB-like genes did not correlate with the presence of methane oxidation genes. Correlations with N2O concentrations indicate that these qnorB-like genes likely facilitate NO reduction to N2O in the ODZ. In the oxycline, qnorB-like genes were not detected in the water column, and estimated N2O production rates from ammonia oxidation were insufficient to support the observed oxycline N2O maximum. However, both qnorB-like and nosZ genes were present within particles in the oxycline, suggesting a particulate source of N2O and N2. Together, our analyses provide a holistic view of the diverse players in the low oxygen nitrogen cycle.


PeerJ | 2017

Effect of the environment on horizontal gene transfer between bacteria and archaea

Clara A. Fuchsman; Roy Eric Collins; Gabrielle Rocap; William J. Brazelton

Background Horizontal gene transfer, the transfer and incorporation of genetic material between different species of organisms, has an important but poorly quantified role in the adaptation of microbes to their environment. Previous work has shown that genome size and the number of horizontally transferred genes are strongly correlated. Here we consider how genome size confuses the quantification of horizontal gene transfer because the number of genes an organism accumulates over time depends on its evolutionary history and ecological context (e.g., the nutrient regime for which it is adapted). Results We investigated horizontal gene transfer between archaea and bacteria by first counting reciprocal BLAST hits among 448 bacterial and 57 archaeal genomes to find shared genes. Then we used the DarkHorse algorithm, a probability-based, lineage-weighted method (Podell & Gaasterland, 2007), to identify potential horizontally transferred genes among these shared genes. By removing the effect of genome size in the bacteria, we have identified bacteria with unusually large numbers of shared genes with archaea for their genome size. Interestingly, archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share unusually large numbers of genes. However, high salt was not found to significantly affect the numbers of shared genes. Numbers of shared (genome size-corrected, reciprocal BLAST hits) and transferred genes (identified by DarkHorse) were strongly correlated. Thus archaea and bacteria that live in anaerobic and/or high temperature conditions are more likely to share horizontally transferred genes. These horizontally transferred genes are over-represented by genes involved in energy conversion as well as the transport and metabolism of inorganic ions and amino acids. Conclusions Anaerobic and thermophilic bacteria share unusually large numbers of genes with archaea. This is mainly due to horizontal gene transfer of genes from the archaea to the bacteria. In general, these transfers are from archaea that live in similar oxygen and temperature conditions as the bacteria that receive the genes. Potential hotspots of horizontal gene transfer between archaea and bacteria include hot springs, marine sediments, and oil wells. Cold spots for horizontal transfer included dilute, aerobic, mesophilic environments such as marine and freshwater surface waters.


The ISME Journal | 2018

Discovery of several novel, widespread, and ecologically distinct marine Thaumarchaeota viruses that encode amoC nitrification genes

Nathan A. Ahlgren; Clara A. Fuchsman; Gabrielle Rocap; Jed A. Fuhrman

Much of the diversity of prokaryotic viruses has yet to be described. In particular, there are no viral isolates that infect abundant, globally significant marine archaea including the phylum Thaumarchaeota. This phylum oxidizes ammonia, fixes inorganic carbon, and thus contributes to globally significant nitrogen and carbon cycles in the oceans. Metagenomics provides an alternative to culture-dependent means for identifying and characterizing viral diversity. Some viruses carry auxiliary metabolic genes (AMGs) that are acquired via horizontal gene transfer from their host(s), allowing inference of what host a virus infects. Here we present the discovery of 15 new genomically and ecologically distinct Thaumarchaeota virus populations, identified as contigs that encode viral capsid and thaumarchaeal ammonia monooxygenase genes (amoC). These viruses exhibit depth and latitude partitioning and are distributed globally in various marine habitats including pelagic waters, estuarine habitats, and hydrothermal plume water and sediments. We found evidence of viral amoC expression and that viral amoC AMGs sometimes comprise up to half of total amoC DNA copies in cellular fraction metagenomes, highlighting the potential impact of these viruses on N cycling in the oceans. Phylogenetics suggest they are potentially tailed viruses and share a common ancestor with related marine Euryarchaeota viruses. This work significantly expands our view of viruses of globally important marine Thaumarchaeota.


FEMS Microbiology Ecology | 2018

Utilization of urea and cyanate in waters overlying and within the eastern tropical north Pacific oxygen deficient zone

Brittany Widner; Clara A. Fuchsman; Bonnie X Chang; Gabrielle Rocap; Margaret R. Mulholland

ABSTRACT In marine oxygen deficient zones (ODZs), which contribute up to half of marine N loss, microbes use nitrogen (N) for assimilatory and dissimilatory processes. Here, we examine N utilization above and within the ODZ of the Eastern Tropical North Pacific Ocean, focusing on distribution, uptake and genes for the utilization of two simple organic N compounds, urea and cyanate. Ammonium, urea and cyanate concentrations generally peaked in the oxycline while uptake rates were highest in the surface. Within the ODZ, concentrations were lower, but urea N and C and cyanate C were taken up. All identified autotrophs had an N assimilation pathway that did not require external ammonium: ODZ Prochlorococcus possessed genes to assimilate nitrate, nitrite and urea; nitrite oxidizers (Nitrospina) possessed genes to assimilate nitrite, urea and cyanate; anammox bacteria (Scalindua) possessed genes to utilize cyanate; and ammonia‐oxidizing Thaumarchaeota possessed genes to utilize urea. Urease genes were present in 20% of microbes, including SAR11, suggesting the urea utilization capacity was widespread. In the ODZ core, cyanate genes were largely (˜95%) associated with Scalindua, suggesting that, within this ODZ, cyanate N is primarily used for N loss via anammox (cyanammox), and that anammox does not require ammonium for N loss.

Collaboration


Dive into the Clara A. Fuchsman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allan H. Devol

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian B. Oakley

Western University of Health Sciences

View shared research outputs
Top Co-Authors

Avatar

Sergey K. Konovalov

National Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge