Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara Camaschella is active.

Publication


Featured researches published by Clara Camaschella.


Nature Communications | 2015

Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014)

Beben Benyamin; Tonu Esko; Janina S. Ried; Aparna Radhakrishnan; Sita H. Vermeulen; Michela Traglia; Martin Goegele; Denise Anderson; Linda Broer; Clara Podmore; Jian'an Luan; Zoltán Kutalik; Serena Sanna; Peter van der Meer; Toshiko Tanaka; Fudi Wang; Harm-Jan Westra; Lude Franke; Evelin Mihailov; Lili Milani; Jonas Haelldin; Juliane Winkelmann; Thomas Meitinger; Joachim Thiery; Annette Peters; Melanie Waldenberger; Augusto Rendon; Jennifer Jolley; Jennifer Sambrook; Lambertus A. Kiemeney

Corrigendum: Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis


Nature Genetics | 2000

The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22

Clara Camaschella; Antonella Roetto; Angelita Calì; Marco Gobbi; Giovanni Garozzo; Massimo Carella; Nunzia Majorano; Angela Totaro; Paolo Gasparini

Haemochromatosis is a common recessive disorder characterized by progressive iron overload, which may lead to severe clinical complications. Most patients are homozygous for the C282Y mutation in HFE on 6p (refs 1–5). A locus for juvenile haemochromatosis (HFE2) maps to 1q (ref. 7). Here we report a new locus (HFE3) on 7q22 and show that a homozygous nonsense mutation in the gene encoding transferrin receptor-2 (TFR2) is found in people with haemochromatosis that maps to HFE3.


The New England Journal of Medicine | 2008

Iron deficiency anemia.

Clara Camaschella

Iron-deficiency anemia is the most common form of anemia in the world. This article reviews the global nature of the disease, iron homeostasis in normal and iron-deficient states, clinical findings, treatment, and causes of iron-resistant iron deficiency.


Cell Metabolism | 2008

The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin.

Laura Silvestri; Alessia Pagani; Antonella Nai; Ivana De Domenico; Jerry Kaplan; Clara Camaschella

The liver peptide hepcidin regulates body iron, is upregulated in iron overload and inflammation, and is downregulated in iron deficiency/hypoxia. The transmembrane serine protease matriptase-2 (TMPRSS6) inhibits the hepcidin response and its mutational inactivation causes iron-deficient anemia in mice and humans. Here we confirm the inhibitory effect of matriptase-2 on hepcidin promoter; we show that matriptase-2 lacking the serine protease domain, identified in the anemic Mask mouse (matriptase-2(MASK)), is fully inactive and that mutant R774C found in patients with genetic iron deficiency has decreased inhibitory activity. Matriptase-2 cleaves hemojuvelin (HJV), a regulator of hepcidin, on plasma membrane; matriptase-2(MASK) shows no cleavage activity and the human mutant only partial cleavage capacity. Matriptase-2 interacts with HJV through the ectodomain since the interaction is conserved in matriptase-2(MASK). The expression of matriptase-2 mutants in zebrafish results in anemia, confirming the matriptase-2 role in iron metabolism and its interaction with HJV.


Gastroenterology | 1998

Heterogeneity of Hemochromatosis in Italy

Alberto Piperno; Maurizio Sampietro; Antonello Pietrangelo; Cristina Arosio; Loredana Lupica; Giuliana Montosi; Anna Vergani; Mirella Fraquelli; Domenico Girelli; Paolo Pasquero; Antonella Roetto; Paolo Gasparini; Silvia Fargion; Dario Conte; Clara Camaschella

BACKGROUND & AIMS Patients with hemochromatosis show variable phenotype expression. We evaluated the frequency of hemochromatosis gene (HFE) mutations and the contribution of HFE genotype, ancestral haplotype, ethnic background, and additional factors (alcohol intake, hepatitis viruses, and beta-thalassemia trait) to the severity of iron overload in a large series of Italian patients with a hemochromatosis phenotype. METHODS HFE genotype was studied in 188 patients. Phenotype evaluation was available in 153 men and 20 women and was based mainly on iron removed. HFE genotype was determined by a polymerase chain reaction restriction assay and ancestral haplotype through D6S265 and D6S105 microsatellite analysis. RESULTS The frequency of C282Y homozygotes was 64%, with a decreasing gradient from north to south. C282Y homozygotes showed more severe iron overload than the other HFE genotypes. In the same group, ancestral haplotype was associated with a more severe phenotype. Additional factors may favor the development of a relatively mild hemochromatosis phenotype in patients nonhomozygous for the C282Y mutation. CONCLUSIONS Hemochromatosis in Italy is a nonhomogenous disorder in which genetic and acquired factors are involved. In patients with a single or no HFE mutation, further studies will enable a differentiation between true genetic disorders and interactions between genetic and acquired factors.


Haematologica | 2008

Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders

Emanuele Angelucci; Giovanni Barosi; Clara Camaschella; Maria Domenica Cappellini; Mario Cazzola; Renzo Galanello; Monia Marchetti; Antonio Piga; Sante Tura

Three iron chelators are currently available for treatment of transfusion iron overload: deferoxamine, deferiprone, and deferasirox. This article reports the Italian Society of Hematology practice guidelines for the management of iron overload in thalassemia major and related disorders. New measures of iron accumulation in liver and heart (superconducting quantum inference device and magnetic resonance imaging), and oral iron chelators (deferiprone and deferasirox) are available for managing iron overload in thalassemia major. To assure appropriate use of these new health technologies, the Italian Society of Hematology appointed a panel of experts to produce clinical practice-guidelines for the management of iron overload in thalassemia major and related disorders. The analytical hierarchy process, a technique for multicriteria decision analysis, was applied to relevant key questions in order to identify the alternative strategies, generate explicit criteria for their evaluation, and check how well the alternatives fulfilled the criteria. The result of a comprehensive systematic review of articles released from 1990 to 2007 was used as a source of scientific evidence to compare the decisional options pairwise, and select the final recommendation. Every step in the model was developed from questionnaires and group discussion. The resulting recommendations advise about which examination to carry out in order to plan iron chelation therapy, when to start iron chelation, which iron chelator to choose in regularly transfused patients, how to monitor iron chelation therapy, and when and how to switch standard therapy.


Haematologica | 2010

Polarization dictates iron handling by inflammatory and alternatively activated macrophages

Gianfranca Corna; Lara Campana; Emanuele Pignatti; Alessandra Castiglioni; Enrico Tagliafico; Lidia Bosurgi; Alessandro Campanella; Silvia Brunelli; Angelo A. Manfredi; Pietro Apostoli; Laura Silvestri; Clara Camaschella; Patrizia Rovere-Querini

Background Macrophages play a key role in iron homeostasis. In peripheral tissues, they are known to polarize into classically activated (or M1) macrophages and alternatively activated (or M2) macrophages. Little is known on whether the polarization program influences the ability of macrophages to store or recycle iron and the molecular machinery involved in the processes. Design and Methods Inflammatory/M1 and alternatively activated/M2 macrophages were propagated in vitro from mouse bone-marrow precursors and polarized in the presence of recombinant interferon-γ or interleukin-4. We characterized and compared their ability to handle radioactive iron, the characteristics of the intracellular iron pools and the expression of molecules involved in internalization, storage and export of the metal. Moreover we verified the influence of iron on the relative ability of polarized macrophages to activate antigen-specific T cells. Results M1 macrophages have low iron regulatory protein 1 and 2 binding activity, express high levels of ferritin H, low levels of transferrin receptor 1 and internalize – albeit with low efficiency -iron only when its extracellular concentration is high. In contrast, M2 macrophages have high iron regulatory protein binding activity, express low levels of ferritin H and high levels of transferrin receptor 1. M2 macrophages have a larger intracellular labile iron pool, effectively take up and spontaneously release iron at low concentrations and have limited storage ability. Iron export correlates with the expression of ferroportin, which is higher in M2 macrophages. M1 and M2 cells activate antigen-specific, MHC class II-restricted T cells. In the absence of the metal, only M1 macrophages are effective. Conclusions Cytokines that drive macrophage polarization ultimately control iron handling, leading to the differentiation of macrophages into a subset which has a relatively sealed intracellular iron content (M1) or into a subset endowed with the ability to recycle the metal (M2).


Journal of Clinical Investigation | 2010

Glutaredoxin 5 deficiency causes sideroblastic anemia by specifically impairing heme biosynthesis and depleting cytosolic iron in human erythroblasts

Hong Ye; Suh Young Jeong; Manik C. Ghosh; Gennadiy Kovtunovych; Laura Silvestri; Danilo Ortillo; Naoya Uchida; John F. Tisdale; Clara Camaschella; Tracey A. Rouault

Glutaredoxin 5 (GLRX5) deficiency has previously been identified as a cause of anemia in a zebrafish model and of sideroblastic anemia in a human patient. Here we report that GLRX5 is essential for iron-sulfur cluster biosynthesis and the maintenance of normal mitochondrial and cytosolic iron homeostasis in human cells. GLRX5, a mitochondrial protein that is highly expressed in erythroid cells, can homodimerize and assemble [2Fe-2S] in vitro. In GLRX5-deficient cells, [Fe-S] cluster biosynthesis was impaired, the iron-responsive element-binding (IRE-binding) activity of iron regulatory protein 1 (IRP1) was activated, and increased IRP2 levels, indicative of relative cytosolic iron depletion, were observed together with mitochondrial iron overload. Rescue of patient fibroblasts with the WT GLRX5 gene by transfection or viral transduction reversed a slow growth phenotype, reversed the mitochondrial iron overload, and increased aconitase activity. Decreased aminolevulinate delta, synthase 2 (ALAS2) levels attributable to IRP-mediated translational repression were observed in erythroid cells in which GLRX5 expression had been downregulated using siRNA along with marked reduction in ferrochelatase levels and increased ferroportin expression. Erythroblasts express both IRP-repressible ALAS2 and non-IRP-repressible ferroportin 1b. The unique combination of IRP targets likely accounts for the tissue-specific phenotype of human GLRX5 deficiency.


Blood | 2009

Molecular mechanisms of the defective hepcidin inhibition in TMPRSS6 mutations associated with iron-refractory iron deficiency anemia.

Laura Silvestri; Flavia Guillem; Alessia Pagani; Antonella Nai; Claire Oudin; Muriel Silva; Fabienne Toutain; Caroline Kannengiesser; Carole Beaumont; Clara Camaschella; Bernard Grandchamp

Matriptase-2 is a transmembrane serine protease that negatively regulates hepcidin expression by cleaving membrane-bound hemojuvelin. Matriptase-2 has a complex ectodomain, including a C-terminal serine protease domain and its activation requires an autocatalytic cleavage. Matriptase-2 mutations have been reported in several patients with iron-refractory iron deficiency anemia. Here we describe a patient with 2 missense mutations in the second class A low-density lipoprotein receptor (LDLRA) domain. Functional studies of these 2 mutations and of a previously reported mutation in the second C1r/C1s, urchin embryonic growth factor and bone morphogenetic protein 1 (CUB) domain were performed. Transfection of mutant cDNAs showed that membrane targeting of the 2 LDLRA mutants was impaired, with Golgi retention of the variants. The activating cleavage was absent for the LDLRA mutants and reduced for the CUB mutant. All 3 mutated proteins were still able to physically interact with hemojuvelin but only partially repressed hepcidin expression compared with wild-type matriptase-2. Our results underline the importance of LDLRA and CUB domains of matriptase-2.


Haematologica | 2013

Iron refractory iron deficiency anemia

Luigia De Falco; Mayka Sanchez; Laura Silvestri; Caroline Kannengiesser; Martina U. Muckenthaler; Achille Iolascon; Laurent Gouya; Clara Camaschella; Carole Beaumont

Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach.

Collaboration


Dive into the Clara Camaschella's collaboration.

Top Co-Authors

Avatar

Laura Silvestri

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Alessia Pagani

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Antonella Nai

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michela Traglia

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Daniela Toniolo

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Alberto Piperno

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge