Clara E. James
University of Geneva
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clara E. James.
NeuroImage | 2008
Clara E. James; Juliane Britz; Patrik Vuilleumier; Claude-Alain Hauert; Christoph M. Michel
In western tonal music, musical phrases end with an explicit harmonic consequent which is highly expected. As such expectation is a consequence of musical background, cerebral processing of incongruities of musical grammar might be a function of expertise. We hypothesized that a subtle incongruity of standard closure should evoke a profound and rapid reaction in an experts brain. If such a reaction is due to neuroplasticity as a consequence of musical training, it should be correlated with distinctive activations in sensory, motor and/or cognitive function related brain areas in response to the incongruent closure. Using event related potential (ERP) source imaging, we determined the temporal dynamics of neuronal activity in highly trained pianists and musical laymen in response to syntactic harmonic incongruities in expressive music, which were easily detected by the experts but not by the laymen. Our results revealed that closure incongruity evokes a selective early response in musical experts, characterized by a strong, right lateralized negative ERP component. Statistical source analysis could demonstrate putative contribution to the generation of this component in right temporal-limbic areas, encompassing hippocampal complex and amygdala, and in right insula. Its early onset (approximately 200 ms) preceded responses in frontal areas that may reflect more conscious processing. These results go beyond previous work demonstrating that musical training can change activity of sensory and motor areas during musical or audio-motor tasks, and suggest that functional plasticity in right medial-temporal structures and insula also modulates processing of subtle harmonic incongruities.
Brain Structure & Function | 2014
Clara E. James; Mathias S. Oechslin; Dimitri Van De Ville; Claude-Alain Hauert; Céline Descloux; François Lazeyras
Using optimized voxel-based morphometry, we performed grey matter density analyses on 59 age-, sex- and intelligence-matched young adults with three distinct, progressive levels of musical training intensity or expertise. Structural brain adaptations in musicians have been repeatedly demonstrated in areas involved in auditory perception and motor skills. However, musical activities are not confined to auditory perception and motor performance, but are entangled with higher-order cognitive processes. In consequence, neuronal systems involved in such higher-order processing may also be shaped by experience-driven plasticity. We modelled expertise as a three-level regressor to study possible linear relationships of expertise with grey matter density. The key finding of this study resides in a functional dissimilarity between areas exhibiting increase versus decrease of grey matter as a function of musical expertise. Grey matter density increased with expertise in areas known for their involvement in higher-order cognitive processing: right fusiform gyrus (visual pattern recognition), right mid orbital gyrus (tonal sensitivity), left inferior frontal gyrus (syntactic processing, executive function, working memory), left intraparietal sulcus (visuo-motor coordination) and bilateral posterior cerebellar Crus II (executive function, working memory) and in auditory processing: left Heschl’s gyrus. Conversely, grey matter density decreased with expertise in bilateral perirolandic and striatal areas that are related to sensorimotor function, possibly reflecting high automation of motor skills. Moreover, a multiple regression analysis evidenced that grey matter density in the right mid orbital area and the inferior frontal gyrus predicted accuracy in detecting fine-grained incongruities in tonal music.
Hippocampus | 2009
Clara E. James; Stéphanie Morand; Sandra Barcellona-Lehmann; Christoph M. Michel; Armin Schnider
Recent studies indicated that the human medial temporal lobe (MTL) may not only be important for long‐term memory consolidation but also for certain forms of short‐term memory. In this study, we explored the interplay between short‐ and long‐term memory using high‐density event‐related potentials. We found that pictures immediately repeated after an unfilled interval were better recognized than pictures repeated after intervening items. After 30 min, however, the immediately repeated pictures were significantly less well recognized than pictures repeated after intervening items. This processing advantage at immediate repetition but disadvantage for long‐term storage had an electrophysiological correlate: spatiotemporal analysis showed that immediate repetition induced a strikingly different electrocortical response after 200–300 ms, with inversed polarity, than new stimuli and delayed repetitions. Inverse solutions indicated that this difference reflected transient activity in the MTL. The findings demonstrate behavioral and electrophysiological dissociation between recognition during active maintenance and recognition after intervening items. Processing of novel information seems to immediately initiate a consolidation process, which remains vulnerable during active maintenance and increases its effectiveness during off‐line processing.
Human Brain Mapping | 2012
Clara E. James; Christoph M. Michel; Juliane Britz; Patrik Vuilleumier; Claude-Alain Hauert
To examine how musical expertise tunes the brain to subtle metric anomalies in an ecological musical context, we presented piano compositions ending on standard and deviant cadences (endings) to expert pianists and musical laymen, while high‐density EEG was recorded. Temporal expectancies were manipulated by substituting standard “masculine” cadences at metrically strong positions with deviant, metrically unaccented, “feminine” cadences. Experts detected metrically deviant cadences better than laymen. Analyses of event‐related potentials demonstrated that an early P3a‐like component (∼ 150–300 ms), elicited by musical closure, was significantly enhanced at frontal and parietal electrodes in response to deviant endings in experts, whereas a reduced response to deviance occurred in laymen. Putative neuronal sources contributing to the modulation of this component were localized in a network of brain regions including bilateral supplementary motor areas, middle and posterior cingulate cortex, precuneus, associative visual areas, as well as in the right amygdala and insula. In all these regions, experts showed enhanced responses to metric deviance. Later effects demonstrated enhanced activations within the same brain network, as well as higher processing speed for experts. These results suggest that early brain responses to metric deviance in experts may rely on motor representations mediated by the supplementary motor area and motor cingulate regions, in addition to areas involved in self‐referential imagery and relevance detection. Such motor representations could play a role in temporal sensory prediction evolved from musical training and suggests that rhythm evokes action more strongly in highly trained instrumentalists. Hum Brain Mapp, 2012.
Hippocampus | 2013
Mathias S. Oechslin; Céline Descloux; Alexandre Croquelois; Julien Chanal; Dimitri Van De Ville; François Lazeyras; Clara E. James
Recently, age‐related hippocampal (HP) volume loss could be associated with a decrease in general fluid intelligence (gF). In the present study we investigated whether and how extensive musical training modulates human HP volume and gF performance. Previously, some studies demonstrated positive effects of musical training on higher cognitive functions such as learning and memory, associated with neural adaptations beyond the auditory domain. In order to detect possible associations between musical training and gF, we bilaterally segmented the HP formation and assessed the individual gF performance of people with different levels of musical expertise. Multiple regression analyses revealed that HP volume predicts gF in musicians but not in nonmusicians; in particular, bilaterally enhanced HP volume is associated with increased gF exclusively in musically trained people (amateurs and experts). This result suggests that musical training facilitates the recruitment of cognitive resources, which are essential for gF and linked to HP functioning. Musical training, even at a moderate level of intensity, can thus be considered as a potential strategy to decelerate age‐related effects of cognitive decline.
Frontiers in Psychology | 2012
Clara E. James
Both language and music consist of discrete elements organized in embedded hierarchical structures. Schon and Francois nicely expose in this review that musical expertise facilitates learning of both linguistic and musical structures. At the behavioral level, the musicians did not outperform the non-musicians. However, ERP analyses showed that acquisition of boundary perception (segmentation) between units improved with musical training. The experimental strategy typically used to investigate segmentation relies in a learning phase-on passive exposition to artificially constructed linguistic and musical material (cf. Figure 1). The authors plausibly argue, also based on a solid literature in this field, that such perceptual learning partially relies on statistics. The probability that a certain element is followed by another is different between and within units (words or tone sequences). In the test phase, participants should discriminate units from non-units. Statistical learning is by no means restricted to the auditory domain. Why would musical expertise facilitate such learning in language? Musical and linguistic syntactical capacities seem correlated (Jentschke et al., 2008; Jentschke and Koelsch, 2009, also see the cited sources by Schon and Francois, p. 5). Moreover, brain substrates for language and music production and perception partially neighbor or overlap each other, although hemispheric dominances for music and language manifest (Zatorre, 2001; Koelsch et al., 2002; Brown et al., 2006). Schon and Francois observed similar ERP responses to linguistic and musical test-items (cf. Figure 4). Shared cerebral networks and behavioral features involved in processing of complex sound suggest common roots. As already suggested by Darwin in his book “The Descent of Man and Selection in Relation to Sex,” a precursor or “proto language” may have preceded the emergence of separated musical and linguistic human capacities, explaining the observed brain and behavior commonalities. Vocal learning capacities possibly contributed to the “survival of the fittest.” We share akin vocal learning capacities with other higher order vertebrates (birds, whales, etc.), as shown in recent comparative research (Huron, 2001; Hauser and McDermott, 2003). More precisely, not vocal discrimination as such, but learning of vocal discrimination seems innate. Now learning is synonymous with plasticity. We can become experts in very different domains, and behavior and brain adapt accordingly, comprising brain adaptations on the functional and the structural level (Maguire et al., 2000; Pascual-Leone, 2001; Brecht and Schmitz, 2008; James et al., 2008; Oechslin et al., 2009; Schlaug et al., 2009). In this context it is not surprising, as the authors also state, that experts in the musical domain show increased learning capacities for segmentation in both music and language. I would argue that trained musicians segment more efficiently not because their statistical learning is better, but because their discrimination and memory of complex sound is better, therefore allowing improved statistical learning as compared to non-musicians, also in a non-musical domain such as language. In conclusion, joint examination of music and language constitutes a powerful means to gain further insight into the processing of highly structured complex sounds in language and music, and their shared behavioral and cerebral features. Schon and Francois provide us with compelling examples of such research.
NeuroImage | 2015
Clara E. James; Donato Cereghetti; Elodie Roullet Tribes; Mathias S. Oechslin
The majority of studies on music processing in children used simple musical stimuli. Here, primary schoolchildren judged the appropriateness of musical closure in expressive polyphone music, while high-density electroencephalography was recorded. Stimuli ended either regularly or contained refined in-key harmonic transgressions at closure. The children discriminated the transgressions well above chance. Regular and transgressed endings evoked opposite scalp voltage configurations peaking around 400ms after stimulus onset with bilateral frontal negativity for regular and centro-posterior negativity (CPN) for transgressed endings. A positive correlation could be established between strength of the CPN response and rater sensitivity (d-prime). We also investigated whether the capacity to discriminate the transgressions was supported by auditory domain specific or general cognitive mechanisms, and found that working memory capacity predicted transgression discrimination. Latency and distribution of the CPN are reminiscent of the N400, typically observed in response to semantic incongruities in language. Therefore our observation is intriguing, as the CPN occurred here within an intra-musical context, without any symbols referring to the external world. Moreover, the harmonic in-key transgressions that we implemented may be considered syntactical as they transgress structural rules. Such structural incongruities in music are typically followed by an early right anterior negativity (ERAN) and an N5, but not so here. Putative contributive sources of the CPN were localized in left pre-motor, mid-posterior cingulate and superior parietal regions of the brain that can be linked to integration processing. These results suggest that, at least in children, processing of syntax and meaning may coincide in complex intra-musical contexts.
Neuropsychologia | 2007
Sandra Lehmann; Stéphanie Morand; Clara E. James; Armin Schnider
Little is known about the initial stages of information processing in amnesia as compared to normal memory. In this study, we used electrical spatiotemporal mapping to compare cortical activation during encoding and recognition in a 56-year-old patient with severe, chronic post-anoxic amnesia and an age-matched control group. Event-related potentials were recorded as the subjects performed a continuous recognition task composed of meaningful designs. Activation in the control group rapidly progressed through eight different electrocortical configurations over 700 ms after onset of new stimuli. In contrast, activation in the amnesic patient was highly monotonous: it showed varying electrocortical patterns only during the first 150 ms but then remained abnormally stable for the remainder of the analysed time window. Electrical source localisation revealed that the patient failed to activate distributed cortical networks and that his processing was confined to visual areas. The present study suggests that the rapid activation of distributed cortical networks is critical for efficient encoding.
Cerebral Cortex | 2018
Mathias S. Oechslin; Markus Gschwind; Clara E. James
As a functional homolog for left-hemispheric syntax processing in language, neuroimaging studies evidenced involvement of right prefrontal regions in musical syntax processing, of which underlying white matter connectivity remains unexplored so far. In the current experiment, we investigated the underlying pathway architecture in subjects with 3 levels of musical expertise. Employing diffusion tensor imaging tractography, departing from seeds from our previous functional magnetic resonance imaging study on music syntax processing in the same participants, we identified a pathway in the right ventral stream that connects the middle temporal lobe with the inferior frontal cortex via the extreme capsule, and corresponds to the left hemisphere ventral stream, classically attributed to syntax processing in language comprehension. Additional morphometric consistency analyses allowed dissociating tract core from more dispersed fiber portions. Musical expertise related to higher tract consistency of the right ventral stream pathway. Specifically, tract consistency in this pathway predicted the sensitivity for musical syntax violations. We conclude that enduring musical practice sculpts ventral stream architecture. Our results suggest that training-related pathway plasticity facilitates the right hemisphere ventral stream information transfer, supporting an improved sound-to-meaning mapping in music.
Neuroscience Letters | 2010
Jessica Tallet; Jérôme Barral; Clara E. James; Claude-Alain Hauert
This study investigated behavioural and electro-cortical reorganizations accompanying intentional switching between two distinct bimanual coordination tapping modes (In-phase and Anti-phase) that differ in stability when produced at the same movement rate. We expected that switching to a less stable tapping mode (In-to-Anti switching) would lead to larger behavioural perturbations and require supplementary neural resources than switching to a more stable tapping mode (Anti-to-In switching). Behavioural results confirmed that the In-to-Anti switching lasted longer than the Anti-to-In switching. A general increase in attention-related neural activity was found at the moment of switching for both conditions. Additionally, two condition-dependent EEG reorganizations were observed. First, a specific increase in cortico-cortical coherence appeared exclusively during the In-to-Anti switching. This result may reflect a strengthening in inter-regional communication in order to engage in the subsequent, less stable, tapping mode. Second, a decrease in motor-related neural activity (increased beta spectral power) was found for the Anti-to-In switching only. The latter effect may reflect the interruption of the previous, less stable, tapping mode. Given that previous results on spontaneous Anti-to-In switching revealing an inverse pattern of EEG reorganization (decreased beta spectral power), present findings give new insight on the stability-dependent neural correlates of intentional motor switching.