Clara Iannuzzi
Seconda Università degli Studi di Napoli
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clara Iannuzzi.
Nature Structural & Molecular Biology | 2009
Salvatore Adinolfi; Clara Iannuzzi; Filippo Prischi; Chiara Pastore; Stefania Iametti; Stephen R. Martin; F. Bonomi; Annalisa Pastore
Frataxin is an essential mitochondrial protein whose reduced expression causes Friedreichs ataxia (FRDA), a lethal neurodegenerative disease. It is believed that frataxin is an iron chaperone that participates in iron metabolism. We have tested this hypothesis using the bacterial frataxin ortholog, CyaY, and different biochemical and biophysical techniques. We observe that CyaY participates in iron-sulfur (Fe-S) cluster assembly as an iron-dependent inhibitor of cluster formation, through binding to the desulfurase IscS. The interaction with IscS involves the iron binding surface of CyaY, which is conserved throughout the frataxin family. We propose that frataxins are iron sensors that act as regulators of Fe-S cluster formation to fine-tune the quantity of Fe-S cluster formed to the concentration of the available acceptors. Our observations provide new perspectives for understanding FRDA and a mechanistic model that rationalizes the available knowledge on frataxin.
Nature Communications | 2010
Filippo Prischi; Petr V. Konarev; Clara Iannuzzi; Chiara Pastore; Salvatore Adinolfi; Stephen R. Martin; Dmitri I. Svergun; Annalisa Pastore
Reduced levels of frataxin, an essential protein of as yet unknown function, are responsible for causing the neurodegenerative pathology Friedreichs ataxia. Independent reports have linked frataxin to iron–sulphur cluster assembly through interactions with the two central components of this machinery: desulphurase Nfs1/IscS and the scaffold protein Isu/IscU. In this study, we use a combination of biophysical methods to define the structural bases of the interaction of CyaY (the bacterial orthologue of frataxin) with the IscS/IscU complex. We show that CyaY binds IscS as a monomer in a pocket between the active site and the IscS dimer interface. Recognition does not require iron and occurs through electrostatic interactions of complementary charged residues. Mutations at the complex interface affect the rates of enzymatic cluster formation. CyaY binding strengthens the affinity of the IscS/IscU complex. Our data suggest a new paradigm for understanding the role of frataxin as a regulator of IscS functions.
Biochemistry | 2012
Jennifer Bridwell-Rabb; Clara Iannuzzi; Annalisa Pastore; David P. Barondeau
Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreichs ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homologue CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homologue is determined by which cysteine desulfurase is present and not by the identity of the frataxin homologue. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologues. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule.
Journal of Biological Chemistry | 2004
Ivana Sirangelo; Clorinda Malmo; Clara Iannuzzi; Antonio Mezzogiorno; Maria Rosaria Bianco; Michele Papa; Gaetano Irace
The apomyoglobin mutant W7FW14F forms amyloid-like fibrils at physiological pH. We examined the kinetics of fibrillogenesis using three techniques: the time dependence of the fluorescence emission of thioflavin T and 1-anilino-8-naphthalenesulfonate, circular dichroism measurements, and electron microscopy. We found that in the early stage of fibril formation, non-native apomyoglobin molecules containing β-structure elements aggregate to form a nucleus. Subsequently, more molecules aggregate around the nucleus, thereby resulting in fibril elongation. We evaluated by MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) the cytotoxicity of these aggregates at the early stage of fibril elongation versus mature fibrils and the wild-type protein. Similar to other amyloid-forming proteins, cell toxicity was not due to insoluble mature fibrils but rather to early pre-fibrillar aggregates. Propidium iodide uptake showed that cell toxicity is the result of altered membrane permeability. Phalloidin staining showed that membrane damage is not associated to an altered cell shape caused by changes in the cytoskeleton.
Journal of Biological Chemistry | 2013
Robert Yan; Petr V. Konarev; Clara Iannuzzi; Salvatore Adinolfi; Béatrice Roche; Geoff Kelly; Léa Simon; Stephen R. Martin; Béatrice Py; Frédéric Barras; Dmitri I. Svergun; Annalisa Pastore
Background: The bacterial Isc operon contains a ferredoxin whose precise role is unknown and a desulfurase enzyme. Results: We have structurally characterized the complex of Escherichia coli ferredoxin with the desulfurase IscS. Conclusion: We show that ferredoxin occupies a groove close to the active site. Significance: Our results shed light into the mechanism of iron-sulfur cluster biogenesis. The bacterial iron-sulfur cluster (isc) operon is an essential machine that is highly conserved from bacteria to primates and responsible for iron-sulfur cluster biogenesis. Among its components are the genes for the desulfurase IscS that provides sulfur for cluster formation, and a specialized ferredoxin (Fdx) whose role is still unknown. Preliminary evidence suggests that IscS and Fdx interact but nothing is known about the binding site and the role of the interaction. Here, we have characterized the interaction using a combination of biophysical tools and mutagenesis. By modeling the Fdx·IscS complex based on experimental restraints we show that Fdx competes for the binding site of CyaY, the bacterial ortholog of frataxin and sits in a cavity close to the enzyme active site. By in vivo mutagenesis in bacteria we prove the importance of the surface of interaction for cluster formation. Our data provide the first structural insights into the role of Fdx in cluster assembly.
Molecules | 2015
Clara Iannuzzi; Gaetano Irace; Ivana Sirangelo
Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.
PLOS ONE | 2011
Clara Iannuzzi; Salvatore Adinolfi; Barry D. Howes; Ricardo Garcia-Serres; Martin Clémancey; Jean-Marc Latour; Giulietta Smulevich; Annalisa Pastore
Progress in understanding the mechanism underlying the enzymatic formation of iron-sulfur clusters is difficult since it involves a complex reaction and a multi-component system. By exploiting different spectroscopies, we characterize the effect on the enzymatic kinetics of cluster formation of CyaY, the bacterial ortholog of frataxin, on cluster formation on the scaffold protein IscU. Frataxin/CyaY is a highly conserved protein implicated in an incurable ataxia in humans. Previous studies had suggested a role of CyaY as an inhibitor of iron sulfur cluster formation. Similar studies on the eukaryotic proteins have however suggested for frataxin a role as an activator. Our studies independently confirm that CyaY slows down the reaction and shed new light onto the mechanism by which CyaY works. We observe that the presence of CyaY does not alter the relative ratio between [2Fe2S]2+ and [4Fe4S]2+ but directly affects enzymatic activity.
The FASEB Journal | 2005
Clorinda Malmo; Silvia Vilasi; Clara Iannuzzi; Silvia Tacchi; Cesare Cametti; Gaetano Irace; Ivana Sirangelo
A significant number of fatal diseases are classified as protein deposition disorders, in which a normally soluble protein is deposited in an insoluble amyloid form. It has been reported that tetracycline exhibits anti‐amyloidogenic activity by inhibiting aggregate formation and disaggregating preformed fibrils. In this work, we examined the effect induced by the presence of tetracycline on the fibrillogenesis and cytotoxicity of the amyloid‐forming apomyoglobin mutant W7FW14F. Like other amyloid‐forming proteins, early prefibrillar aggregates formed by this protein are highly cytotoxic, whereas insoluble mature fibrils are not. The effect induced by tetracycline on the fibrillation process has been examined by atomic force microscopy, light scattering, DPH staining, and thioflavin T fluorescence. The cytotoxicity of the amyloid aggregates was estimated by measuring cell viability using MTT assay. The results show that tetracycline acts as anti‐aggregating agent, which inhibits the fibril elongation process but not the early aggregation steps leading to the formation of soluble oligomeric aggregates. Thus, this inhibition keeps the W7FW14F mutant in a prefibrillar, highly cytotoxic state. In this respect, a careful usage of tetracycline as fibril inhibitor is indicated.
Protein Science | 2007
Clara Iannuzzi; Silvia Vilasi; Marianna Portaccio; Gaetano Irace; Ivana Sirangelo
Myoglobin is an α‐helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N‐terminal region. The double W/F replacement renders apomyoglobin highly susceptible to aggregation and amyloid‐like fibril formation under physiological conditions. In this work we analyze the early stage of W7FW14F apomyoglobin aggregation following the time dependence of the process by far‐UV CD, Fourier‐transform infrared (FTIR) spectroscopy, and heme‐binding properties. The results show that the aggregation of W7FW14F apomyoglobin starts from a native‐like globin state able to bind the prosthetic group with spectroscopic properties similar to those observed for wild‐type apoprotein. Nevertheless, it rapidly aggregates, forming amyloid fibrils. However, when the prosthetic group is added before the beginning of aggregation, amyloid fibrillization is inhibited, although the aggregation process is not prevented. Moreover, the apomyoglobin aggregates formed in these conditions are not cytotoxic differently from what is observed for all amyloidogenic proteins. These results open new insights into the relationship between the structure adopted by the protein into the aggregates and their ability to trigger the impairment of cell viability.
PLOS ONE | 2013
Clara Iannuzzi; Rosa Maritato; Gaetano Irace; Ivana Sirangelo
Neurodegenerative diseases are associated with misfolding and deposition of specific proteins, either intra or extracellularly in the nervous system. Advanced glycation end products (AGEs) originate from different molecular species that become glycated after exposure to sugars. Several proteins implicated in neurodegenerative diseases have been found to be glycated in vivo and the extent of glycation is related to the pathologies of the patients. Although it is now accepted that there is a direct correlation between AGEs formation and the development of neurodegenerative diseases, several questions still remain unanswered: whether glycation is the triggering event or just an additional factor acting on the aggregation pathway. To this concern, in the present study we have investigated the effect of glycation on the aggregation pathway of the amyloidogenic W7FW14F apomyoglobin. Although this protein has not been related to any amyloid disease, it represents a good model to resemble proteins that intrinsically evolve toward the formation of amyloid aggregates in physiological conditions. We show that D-ribose, but not D-glucose, rapidly induces the W7FW14F apomyoglobin to generate AGEs in a time-dependent manner and protein ribosylation is likely to involve lysine residues on the polypeptide chain. Ribosylation of the W7FW14F apomyoglobin strongly affects its aggregation kinetics producing amyloid fibrils within few days. Cytotoxicity of the glycated aggregates has also been tested using a cell viability assay. We propose that ribosylation in the W7FW14F apomyoglobin induces the formation of a cross-link that strongly reduces the flexibility of the H helix and/or induce a conformational change that favor fibril formation. These results open new perspectives for AGEs biological role as they can be considered not only a triggering factor in amyloidosis but also a player in later stages of the aggregation process.