Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara Penas is active.

Publication


Featured researches published by Clara Penas.


Epigenetics | 2014

BET bromodomain proteins are required for glioblastoma cell proliferation

Chiara Pastori; Mark Daniel; Clara Penas; Claude Henry Volmar; Andrea L. Johnstone; Regina M. Graham; Bryce K. Allen; Jann N. Sarkaria; Ricardo J. Komotar; Claes Wahlestedt; Nagi G. Ayad

Epigenetic proteins have recently emerged as novel anticancer targets. Among these, bromodomain and extra terminal domain (BET) proteins recognize lysine-acetylated histones, thereby regulating gene expression. Newly described small molecules that inhibit BET proteins BRD2, BRD3, and BRD4 reduce proliferation of NUT (nuclear protein in testis)-midline carcinoma, multiple myeloma, and leukemia cells in vitro and in vivo. These findings prompted us to determine whether BET proteins may be therapeutic targets in the most common primary adult brain tumor, glioblastoma (GBM). We performed NanoString analysis of GBM tumor samples and controls to identify novel therapeutic targets. Several cell proliferation assays of GBM cell lines and stem cells were used to analyze the efficacy of the drug I-BET151 relative to temozolomide (TMZ) or cell cycle inhibitors. Lastly, we performed xenograft experiments to determine the efficacy of I-BET151 in vivo. We demonstrate that BRD2 and BRD4 RNA are significantly overexpressed in GBM, suggesting that BET protein inhibition may be an effective means of reducing GBM cell proliferation. Disruption of BRD4 expression in glioblastoma cells reduced cell cycle progression. Similarly, treatment with the BET protein inhibitor I-BET151 reduced GBM cell proliferation in vitro and in vivo. I-BET151 treatment enriched cells at the G1/S cell cycle transition. Importantly, I-BET151 is as potent at inhibiting GBM cell proliferation as TMZ, the current chemotherapy treatment administered to GBM patients. Since I-BET151 inhibits GBM cell proliferation by arresting cell cycle progression, we propose that BET protein inhibition may be a viable therapeutic option for GBM patients suffering from TMZ resistant tumors.


Proceedings of the National Academy of Sciences of the United States of America | 2015

The bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation

Chiara Pastori; Philipp Kapranov; Clara Penas; Veronica J. Peschansky; Claude-Henry Volmar; Jann N. Sarkaria; Amade Bregy; Ricardo J. Komotar; Georges St. Laurent; Nagi G. Ayad; Claes Wahlestedt

Significance Glioblastoma Multiforme (GBM) is the most common and deadliest primary brain tumor in adults. As the median survival is approximately 14 mo there is an urgent need for novel therapies. Epigenetic modulators such as bromodomain and extraterminal (BET) proteins are important therapeutic targets in GBM. Bromodomain inhibitors (including I-BET151) suppress proliferation by repressing oncogenes and inducing tumor suppressor genes through unidentified pathways. Here we demonstrate that HOTAIR (HOX transcript antisense RNA) is overexpressed in GBM, where it is crucial to sustain tumor cell proliferation, and that inhibition of HOTAIR by I-BET151 is necessary to induce cell cycle arrest in GBM cells. Our study outlines the mechanism of action underlying the antiproliferative activity of I-BET151, showing for the first time, to our knowledge, that the oncogenic long noncoding RNA HOTAIR is a major target. Bromodomain and extraterminal (BET) domain proteins have emerged as promising therapeutic targets in glioblastoma and many other cancers. Small molecule inhibitors of BET bromodomain proteins reduce expression of several oncogenes required for Glioblastoma Multiforme (GBM) progression. However, the mechanism through which BET protein inhibition reduces GBM growth is not completely understood. Long noncoding RNAs (lncRNAs) are important epigenetic regulators with critical roles in cancer initiation and malignant progression, but mechanistic insight into their expression and regulation by BET bromodomain inhibitors remains elusive. In this study, we used Helicos single molecule sequencing to comprehensively profile lncRNAs differentially expressed in GBM, and we identified a subset of GBM-specific lncRNAs whose expression is regulated by BET proteins. Treatment of GBM cells with the BET bromdomain inhibitor I-BET151 reduced levels of the tumor-promoting lncRNA HOX transcript antisense RNA (HOTAIR) and restored the expression of several other GBM down-regulated lncRNAs. Conversely, overexpression of HOTAIR in conjunction with I-BET151 treatment abrogates the antiproliferative activity of the BET bromodomain inhibitor. Moreover, chromatin immunoprecipitation analysis demonstrated binding of Bromodomain Containing 4 (BRD4) to the HOTAIR promoter, suggesting that BET proteins can directly regulate lncRNA expression. Our data unravel a previously unappreciated mechanism through which BET proteins control tumor growth of glioblastoma cells and suggest that modulation of lncRNA networks may, in part, mediate the antiproliferative effects of many epigenetic inhibitors currently in clinical trials for cancer and other diseases.


Epigenetics | 2013

Epigenetic pathways and glioblastoma treatment

Jennifer Clarke; Clara Penas; Chiara Pastori; Ricardo J. Komotar; Amade Bregy; Ashish H. Shah; Claes Wahlestedt; Nagi G. Ayad

Glioblastoma multiforme (GBM) is the most common malignant adult brain tumor. Standard GBM treatment includes maximal safe surgical resection with combination radiotherapy and adjuvant temozolomide (TMZ) chemotherapy. Alarmingly, patient survival at five-years is below 10%. This is in part due to the invasive behavior of the tumor and the resulting inability to resect greater than 98% of some tumors. In fact, recurrence after such treatment may be inevitable, even in cases where gross total resection is achieved. The Cancer Genome Atlas (TCGA) research network performed whole genome sequencing of GBM tumors and found that GBM recurrence is linked to epigenetic mechanisms and pathways. Central to these pathways are epigenetic enzymes, which have recently emerged as possible new drug targets for multiple cancers, including GBM. Here we review GBM treatment, and provide a systems approach to identifying epigenetic drivers of GBM tumor progression based on temporal modeling of putative GBM cells of origin. We also discuss advances in defining epigenetic mechanisms controlling GBM initiation and recurrence and the drug discovery considerations associated with targeting epigenetic enzymes for GBM treatment.


Cell Reports | 2015

Casein Kinase 1δ Is an APC/CCdh1 Substrate that Regulates Cerebellar Granule Cell Neurogenesis

Clara Penas; Eve Ellen Govek; Yin Fang; Mark Daniel; Weiping Wang; Marie E. Maloof; Ronald J. Rahaim; Mathieu Bibian; Daisuke Kawauchi; David Finkelstein; Jeng Liang Han; Jun Long; Bin Li; David J. Robbins; Marcos Malumbres; Martine F. Roussel; William R. Roush; Mary E. Hatten; Nagi G. Ayad

Although casein kinase 1δ (CK1δ) is at the center of multiple signaling pathways, its role in the expansion of CNS progenitor cells is unknown. Using mouse cerebellar granule cell progenitors (GCPs) as a model for brain neurogenesis, we demonstrate that the loss of CK1δ or treatment of GCPs with a highly selective small molecule inhibits GCP expansion. In contrast, CK1δ overexpression increases GCP proliferation. Thus, CK1δ appears to regulate GCP neurogenesis. CK1δ is targeted for proteolysis via the anaphase-promoting complex/cyclosome (APC/C(Cdh1)) ubiquitin ligase, and conditional deletion of the APC/C(Cdh1) activator Cdh1 in cerebellar GCPs results in higher levels of CK1δ. APC/C(Cdh1) also downregulates CK1δ during cell-cycle exit. Therefore, we conclude that APC/C(Cdh1) controls CK1δ levels to balance proliferation and cell-cycle exit in the developing CNS. Similar studies in medulloblastoma cells showed that CK1δ holds promise as a therapeutic target.


Journal of Biological Chemistry | 2014

Casein Kinase 1δ-dependent Wee1 Protein Degradation

Clara Penas; Scott Simanski; Choogon Lee; Franck Madoux; Ronald J. Rahaim; Ruchi Chauhan; Omar Barnaby; Stephan C. Schürer; Peter Hodder; Judith A. Steen; William R. Roush; Nagi G. Ayad

Background: Wee1 is an essential gene in mammals that encodes the cell cycle and cancer associated protein Wee1 kinase. Results: Inhibition of CK1δ kinase increases the levels of Wee1 protein kinase. Conclusion: Casein kinase 1δ is required for Wee1 degradation in HeLa cells and mouse embryonic fibroblasts. Significance: This is a previously unappreciated role for CK1δ in controlling Wee1 degradation and cell cycle progression. Eukaryotic mitotic entry is controlled by Cdk1, which is activated by the Cdc25 phosphatase and inhibited by Wee1 tyrosine kinase, a target of the ubiquitin proteasome pathway. Here we use a reporter of Wee1 degradation, K328M-Wee1-luciferase, to screen a kinase-directed chemical library. Hit profiling identified CK1δ-dependent Wee1 degradation. Small-molecule CK1δ inhibitors specifically disrupted Wee1 destruction and arrested HeLa cell proliferation. Pharmacological inhibition, siRNA knockdown, or conditional deletion of CK1δ also reduced Wee1 turnover. Thus, these studies define a previously unappreciated role for CK1δ in controlling the cell cycle.


Oncogene | 2017

Inhibition of WNT signaling attenuates self-renewal of SHH-subgroup medulloblastoma

Jezabel Rodriguez-Blanco; Lina Pednekar; Clara Penas; Bin Li; Vanesa Martín; Jun Long; Ethan Lee; William A. Weiss; Carmen Rodríguez; N Mehrdad; Dao M. Nguyen; N G Ayad; Priyamvada Rai; Anthony J. Capobianco; David J. Robbins

The SMOOTHENED inhibitor vismodegib is FDA approved for advanced basal cell carcinoma (BCC), and shows promise in clinical trials for SONIC HEDGEHOG (SHH)-subgroup medulloblastoma (MB) patients. Clinical experience with BCC patients shows that continuous exposure to vismodegib is necessary to prevent tumor recurrence, suggesting the existence of a vismodegib-resistant reservoir of tumor-propagating cells. We isolated such tumor-propagating cells from a mouse model of SHH-subgroup MB and grew them as sphere cultures. These cultures were enriched for the MB progenitor marker SOX2 and formed tumors in vivo. Moreover, while their ability to self-renew was resistant to SHH inhibitors, as has been previously suggested, this self-renewal was instead WNT-dependent. We show here that loss of Trp53 activates canonical WNT signaling in these SOX2-enriched cultures. Importantly, a small molecule WNT inhibitor was able to reduce the propagation and growth of SHH-subgroup MB in vivo, in an on-target manner, leading to increased survival. Our results imply that the tumor-propagating cells driving the growth of bulk SHH-dependent MB are themselves WNT dependent. Further, our data suggest combination therapy with WNT and SHH inhibitors as a therapeutic strategy in patients with SHH-subgroup MB, in order to decrease the tumor recurrence commonly observed in patients treated with vismodegib.


Cell Cycle | 2015

GSK3 inhibitors stabilize Wee1 and reduce cerebellar granule cell progenitor proliferation

Clara Penas; Jitendra Mishra; Spencer D. Wood; Stephan C. Schürer; William R. Roush; Nagi G. Ayad

Ubiquitin mediated proteolysis is required for transition from one cell cycle phase to another. For instance, the mitosis inhibitor Wee1 is targeted for degradation during S phase and G2 to allow mitotic entry. Wee1 is an essential tyrosine kinase required for the G2/M transition and S-phase progression. Although several studies have concentrated on Wee1 regulation during mitosis, few have elucidated its degradation during interphase. Our prior studies have demonstrated that Wee1 is degraded via CK1δ dependent phosphorylation during the S and G2/M phases of the cell cycle. Here we demonstrate that GSK3β may work in concert with CK1δ to induce Wee1 destruction during interphase. We generated small molecules that specifically stabilized Wee1. We profiled these compounds against 296 kinases and found that they inhibit GSK3α and GSK3β, suggesting that Wee1 may be targeted for proteolysis by GSK3. Consistent with this notion, known GSK3 inhibitors stabilized Wee1 and GSK3β depletion reduced Wee1 turnover. Given Wee1s central role in cell cycle progression, we predicted that GSK3 inhibitors should limit cell proliferation. Indeed, we demonstrate that GSK3 inhibitors potently inhibited proliferation of the most abundant cell in the mammalian brain, the cerebellar granule cell progenitor (GCP). These studies identify a previously unappreciated role for GSK3β mediated regulation of Wee1 during the cell cycle and in neurogenesis. Furthermore, they suggest that pharmacological inhibition of Wee1 may be therapeutically attractive in some cancers where GSK-3β or Wee1 are dysregulated.


Cell Cycle | 2015

Screening of cell cycle fusion proteins to identify kinase signaling networks

Michelle Trojanowsky; Dušica Vidovic; Scott Simanski; Clara Penas; Stephan C. Schürer; Nagi G. Ayad

Kinase signaling networks are well-established mediators of cell cycle transitions. However, how kinases interact with the ubiquitin proteasome system (UPS) to elicit protein turnover is not fully understood. We sought a means of identifying kinase-substrate interactions to better understand signaling pathways controlling protein degradation. Our prior studies used a luciferase fusion protein to uncover kinase networks controlling protein turnover. In this study, we utilized a similar approach to identify pathways controlling the cell cycle protein p27Kip1. We generated a p27Kip1-luciferase fusion and expressed it in cells incubated with compounds from a library of pharmacologically active compounds. We then compared the relative effects of the compounds on p27Kip1-luciferase fusion stabilization. This was combined with in silico kinome profiling to identify potential kinases inhibited by each compound. This approach effectively uncovered known kinases regulating p27Kip1 turnover. Collectively, our studies suggest that this parallel screening approach is robust and can be applied to fully understand kinase-ubiquitin pathway interactions.


Neuro-oncology | 2017

GENE-03. SERUM LONG NONCODING RNA HOTAIR AS NOVEL DIAGNOSTIC AND PROGNOSTIC BIOMARKER IN GLIOBLASTOMA MULTIFORME

Sze Kiat Tan; Chiara Pastori; Clara Penas; Jann N. Sarkaria; Ricardo J. Komotar; Nagi G. Ayad

Glioblastoma multiforme (GBM) is the most common and aggressive malignant adult primary brain tumor. Despite surgical resection followed by radiotherapy and chemotherapy, the median survival rate is approximately 14 months. Although experimental therapies are in clinical trials for GBM, there is an urgent need for a peripheral GBM biomarker for measuring treatment response. As we have previously demonstrated that the long noncoding RNA HOX Transcript Antisense Intergenic RNA, or HOTAIR, is dysregulated in GBM and required for GBM cell proliferation, we hypothesized that HOTAIR expression may be utilized as a peripheral biomarker for GBM. HOTAIR expression was measured in serum from 43 GBM and 40 controls using quantitative real-time PCR (qRT-PCR). The PCR products were subsequently subcloned into pCR™4-TOPO®TA vectors for DNA sequencing. A ROC curve was also generated to examine HOTAIR’s prognostic value. The amount of HOTAIR in serum exosomes and exosome-depleted supernatant was calculated by qRT-PCR. The relative HOTAIR expression was also investigated in 15 pairs of GBM serum and tumors. We detected HOTAIR in serum from GBM patients. HOTAIR levels in serum samples from GBM patients was significantly higher than in the corresponding controls (P < 0.0001). The area under the ROC curve distinguishing GBM patients from controls was 0.913 (95% CI: 0.845–0.982, P < 0.0001), with 86.1% sensitivity and 87.5% specificity at the cut-off value of 10.8. HOTAIR expression was significantly correlated with high grade brain tumors. In addition, Pearson correlation analysis indicated a medium correlation of serum HOTAIR levels and the corresponding tumor HOTAIR levels (r = 0.734, P < 0.01). We confirmed via sequencing that the amplified HOTAIR from serum contained the HOTAIR sequence and maps to the known HOTAIR locus at 12q13. The serum-derived exosomes contain HOTAIR and the purified exosomes were validated by western blot and nanoparticle tracking analysis. Importantly, our results demonstrate that serum HOTAIR can be used as a novel prognostic and diagnostic biomarker for GBM.


Epigenetic Cancer Therapy | 2015

The Epigenetics of Medulloblastoma

Clara Penas; Vasileios Stathias; Bryce K. Allen; Nagi G. Ayad

Medulloblastoma is the most common malignant pediatric brain tumor arising in the cerebellum or medulla/brain stem. Despite recent treatment advances, approximately 40% of children experience tumor recurrence and 30% will die from the disease. Several recent studies have shown that various epigenetic enzymes are either mutated or overexpressed in medulloblastoma. Thus, these enzymes are considered drug targets in medulloblastoma. Similarly, small RNAs named microRNAs are attractive for therapeutic intervention since they control expression of medulloblastoma tumor suppressors or oncogenes. Interestingly, strategies to modulate epigenetic enzymes and microRNAs simultaneously may be particularly attractive for medulloblastoma treatment. We highlight that the knowledge of epigenetic enzymes, microRNAs, in addition to kinase and ubiquitin ligase networks is especially important for designing combination therapies in medulloblastoma.

Collaboration


Dive into the Clara Penas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Li

University of Miami

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William R. Roush

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge