Clara Sá-Miranda
Instituto de Biologia Molecular e Celular
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clara Sá-Miranda.
Journal of Biological Chemistry | 2007
Andreia F. Carvalho; Manuel P. Pinto; Cláudia P. Grou; Inês S. Alencastre; Marc Fransen; Clara Sá-Miranda; Jorge E. Azevedo
Protein translocation across the peroxisomal membrane requires the concerted action of numerous peroxins. One central component of this machinery is Pex5p, the cycling receptor for matrix proteins. Pex5p recognizes newly synthesized proteins in the cytosol and promotes their translocation across the peroxisomal membrane. After this translocation step, Pex5p is recycled back into the cytosol to start a new protein transport cycle. Here, we show that mammalian Pex5p is ubiquitinated at the peroxisomal membrane. Two different types of ubiquitination were detected, one of which is thiol-sensitive, involves Cys11 of Pex5p, and is necessary for the export of the receptor back into the cytosol. Together with mechanistic data recently described for yeast Pex5p, these findings provide strong evidence for the existence of Pex4p- and Pex22p-like proteins in mammals.
Journal of Biological Chemistry | 2000
Alexandra Gouveia; Carlos Reguenga; Márcia E. Oliveira; Clara Sá-Miranda; Jorge E. Azevedo
Pex5p is the receptor for the vast majority of peroxisomal matrix proteins. Here, we show that about 15% of rat liver Pex5p is found in the peroxisomal fraction representing 0.06% of total peroxisomal protein. This population of Pex5p displays all the characteristics of an intrinsic membrane protein. Protease protection assays indicate that this pool of Pex5p has domains exposed on both sides of the peroxisomal membrane. The strong interaction of Pex5p with the membrane of the organelle is not affected by mild protease treatment of intact organelles, conditions that result in the partial degradation of Pex13p. Cytosolic Pex5p is a monomeric protein. In contrast, virtually all peroxisomal Pex5p was found to be part of a stable 250-kDa protein assembly. This complex was isolated and shown to comprise just two subunits, Pex5p and Pex14p.
Journal of Biological Chemistry | 2008
Cláudia P. Grou; Andreia F. Carvalho; Manuel P. Pinto; Sebastian Wiese; Heike Piechura; Helmut E. Meyer; Bettina Warscheid; Clara Sá-Miranda; Jorge E. Azevedo
According to current models of peroxisomal biogenesis, newly synthesized peroxisomal matrix proteins are transported into the organelle by Pex5p. Pex5p recognizes these proteins in the cytosol, mediates their membrane translocation, and is exported back into the cytosol in an ATP-dependent manner. We have previously shown that export of Pex5p is preceded by (and requires) monoubiquitination of a conserved cysteine residue present at its N terminus. In yeasts, and probably also in plants, ubiquitination of Pex5p is mediated by a specialized ubiquitin-conjugating enzyme, Pex4p. In mammals, the identity of this enzyme has remained unknown for many years. Here, we provide evidence suggesting that E2D1/2/3 (UbcH5a/b/c) are the mammalian functional counterparts of yeast/plant Pex4p. The mechanistic implications of these findings are discussed.
Journal of Biological Chemistry | 2003
Márcia E. Oliveira; Alexandra Gouveia; Rui A. Pinto; Clara Sá-Miranda; Jorge E. Azevedo
Most newly synthesized peroxisomal matrix proteins are targeted to the organelle by Pex5p, the peroxisomal cycling receptor. According to current models of peroxisomal biogenesis, Pex5p interacts with cargo proteins in the cytosol and transports them to the peroxisomal membrane. After delivering the passenger protein into the peroxisomal matrix, Pex5p returns to the cytosol to catalyze additional rounds of transportation. Obviously, such cyclic pathway must require energy, and indeed, data confirming this need are already available. However, the exact step(s) of this cycle where energy input is necessary remains unclear. Here, we present data suggesting that insertion of Pex5p into the peroxisomal membrane does not require ATP hydrolysis. This observation raises the possibility that at the peroxisomal membrane ATP is needed predominantly (if not exclusively) downstream of the protein translocation step to reset the Pex5p-mediated transport system.
Journal of Biological Chemistry | 2003
Alexandra Gouveia; Carla P. Guimarães; Márcia E. Oliveira; Clara Sá-Miranda; Jorge E. Azevedo
It is now generally accepted that Pex5p, the receptor for most peroxisomal matrix proteins, cycles between the cytosol and the peroxisomal compartment. According to current models of peroxisomal biogenesis, this intracellular trafficking of Pex5p is coupled to the transport of newly synthesized peroxisomal proteins into the organelle matrix. However, direct evidence supporting this hypothesis was never provided. Here, using an in vitroperoxisomal import system, we show that insertion of Pex5p into the peroxisomal membrane requires the presence of cargo proteins. Strikingly the peroxisomal docking/translocation machinery is also able to catalyze the membrane insertion of a Pex5p truncated molecule lacking any known cargo-binding domain. These results suggest that the cytosol/peroxisomal cycle in which Pex5p is involved is directly or indirectly regulated by Pex5p itself and not by the peroxisomal docking/translocation machinery.
Journal of Biological Chemistry | 2009
Cláudia P. Grou; Andreia F. Carvalho; Manuel P. Pinto; Sofie Huybrechts; Clara Sá-Miranda; Marc Fransen; Jorge E. Azevedo
Pex5p, the peroxisomal protein cycling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During its transient passage through the membrane, Pex5p is monoubiquitinated at a conserved cysteine residue, a requisite for its subsequent ATP-dependent export back into the cytosol. Here we describe the properties of the soluble and membrane-bound monoubiquitinated Pex5p species (Ub-Pex5p). Our data suggest that 1) Ub-Pex5p is deubiquitinated by a combination of context-dependent enzymatic and nonenzymatic mechanisms; 2) soluble Ub-Pex5p retains the capacity to interact with the peroxisomal import machinery in a cargo-dependent manner; and 3) substitution of the conserved cysteine residue of Pex5p by a lysine results in a quite functional protein both in vitro and in vivo. Additionally, we show that MG132, a proteasome inhibitor, blocks the import of a peroxisomal reporter protein in vivo.
Journal of Biological Chemistry | 2011
Marta O. Freitas; Tânia Francisco; Tony A. Rodrigues; Inês S. Alencastre; Manuel P. Pinto; Cláudia P. Grou; Andreia F. Carvalho; Marc Fransen; Clara Sá-Miranda; Jorge E. Azevedo
Background: PEX5 binds newly synthesized peroxisomal proteins in the cytosol and releases them in the organelle matrix. Results: PEX5 binds monomeric catalase and releases it in the presence of PEX14. Conclusion: PEX14 participates in the cargo release step. Significance: Knowing how PEX5 interacts with cargo proteins and which factors disrupt this interaction are crucial for understanding this protein sorting pathway. Newly synthesized peroxisomal matrix proteins are targeted to the organelle by PEX5. PEX5 has a dual role in this process. First, it acts as a soluble receptor recognizing these proteins in the cytosol. Subsequently, at the peroxisomal docking/translocation machinery, PEX5 promotes their translocation across the organelle membrane. Despite significant advances made in recent years, several aspects of this pathway remain unclear. Two important ones regard the formation and disruption of the PEX5-cargo protein interaction in the cytosol and at the docking/translocation machinery, respectively. Here, we provide data on the interaction of PEX5 with catalase, a homotetrameric enzyme in its native state. We found that PEX5 interacts with monomeric catalase yielding a stable protein complex; no such complex was detected with tetrameric catalase. Binding of PEX5 to monomeric catalase potently inhibits its tetramerization, a property that depends on domains present in both the N- and C-terminal halves of PEX5. Interestingly, the PEX5-catalase interaction is disrupted by the N-terminal domain of PEX14, a component of the docking/translocation machinery. One or two of the seven PEX14-binding diaromatic motifs present in the N-terminal half of PEX5 are probably involved in this phenomenon. These results suggest the following: 1) catalase domain(s) involved in the interaction with PEX5 are no longer accessible upon tetramerization of the enzyme; 2) the catalase-binding interface in PEX5 is not restricted to its C-terminal peroxisomal targeting sequence type 1-binding domain and also involves PEX5 N-terminal domain(s); and 3) PEX14 participates in the cargo protein release step.
Cellular and Molecular Life Sciences | 2009
Cláudia P. Grou; Andreia F. Carvalho; Manuel P. Pinto; Inês S. Alencastre; Tony A. Rodrigues; Marta O. Freitas; Tânia Francisco; Clara Sá-Miranda; Jorge E. Azevedo
Abstract.The peroxisomal protein import machinery displays remarkable properties. Be it its capacity to accept already folded proteins as substrates, its complex architecture or its energetics, almost every aspect of this machinery seems unique. The list of unusual properties is still growing as shown by the recent finding that one of its central components, Pex5p, is transiently monoubiquitinated at a cysteine residue. However, the data gathered in recent years also suggest that the peroxisomal import machinery is not that exclusive and similarities with p97/Cdc48-mediated processes and with multisubunit RING-E3 ligases are starting to emerge. Here, we discuss these data trying to distill the principles by which this complex machinery operates.
Journal of Biological Chemistry | 2006
Manuel P. Pinto; Cláudia P. Grou; Inês S. Alencastre; Márcia E. Oliveira; Clara Sá-Miranda; Marc Fransen; Jorge E. Azevedo
Biogenesis of the mammalian peroxisomal membrane requires the action of Pex3p and Pex16p, two proteins present in the organelle membrane, and Pex19p, a protein that displays a dual subcellular distribution (peroxisomal and cytosolic). Pex19p interacts with most peroxisomal intrinsic membrane proteins, but whether this property reflects its role as an import receptor for this class of proteins or a chaperone-like function in the assembly/disassembly of peroxisomal membrane proteins has been the subject of much controversy. Here, we describe an in vitro system particularly suited to address this issue. It is shown that insertion of a reporter protein into the peroxisomal membrane is a Pex3p-dependent process that does not require ATP/GTP hydrolysis. The system can be programmed with recombinant versions of Pex19p, allowing us to demonstrate that Pex19p-cargo protein complexes formed in the absence of peroxisomes are the substrates for the peroxisomal docking/insertion machinery. Data suggesting that cargo-loaded Pex19p displays a much higher affinity for Pex3p than Pex19p alone are also provided. These results suggest that soluble Pex19p participates in the targeting of newly synthesized peroxisomal membrane proteins to the organelle membrane and support the existence of a cargo-induced peroxisomal targeting mechanism for Pex19p.
Journal of Biological Chemistry | 2012
Cláudia P. Grou; Tânia Francisco; Tony A. Rodrigues; Marta O. Freitas; Manuel P. Pinto; Andreia F. Carvalho; Pedro Domingues; Stephen A. Wood; José E. Rodríguez-Borges; Clara Sá-Miranda; Marc Fransen; Jorge E. Azevedo
Background: The mammalian deubiquitinase that hydrolyzes the ubiquitin-PEX5 thioester conjugate was unknown. Results: USP9X was found to be the most active deubiquitinase acting on ubiquitin-PEX5. Conclusion: We propose that USP9X participates in the PEX5-mediated peroxisomal protein import pathway. Significance: The unbiased biochemical strategy described here will be useful to identify deubiquitinases acting on other substrates. Peroxin 5 (PEX5), the peroxisomal protein shuttling receptor, binds newly synthesized peroxisomal matrix proteins in the cytosol and promotes their translocation across the organelle membrane. During the translocation step, PEX5 itself becomes inserted into the peroxisomal docking/translocation machinery. PEX5 is then monoubiquitinated at a conserved cysteine residue and extracted back into the cytosol in an ATP-dependent manner. We have previously shown that the ubiquitin-PEX5 thioester conjugate (Ub-PEX5) released into the cytosol can be efficiently disrupted by physiological concentrations of glutathione, raising the possibility that a fraction of Ub-PEX5 is nonenzymatically deubiquitinated in vivo. However, data suggesting that Ub-PEX5 is also a target of a deubiquitinase were also obtained in that work. Here, we used an unbiased biochemical approach to identify this enzyme. Our results suggest that ubiquitin-specific protease 9X (USP9X) is by far the most active deubiquitinase acting on Ub-PEX5, both in female rat liver and HeLa cells. We also show that USP9X is an elongated monomeric protein with the capacity to hydrolyze thioester, isopeptide, and peptide bonds. The strategy described here will be useful in identifying deubiquitinases acting on other ubiquitin conjugates.