Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clara Torrentó is active.

Publication


Featured researches published by Clara Torrentó.


Journal of Hazardous Materials | 2015

C, Cl and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site.

Carme Audí-Miró; Stefan Cretnik; Clara Torrentó; Mònica Rosell; Orfan Shouakar-Stash; Neus Otero; Jordi Palau; Martin Elsner; Albert Soler

Compound-specific isotopic analysis of multiple elements (C, Cl, H) was tested to better assess the effect of a zero-valent iron-permeable reactive barrier (ZVI-PRB) installation at a site contaminated with tetrachloroethene (PCE) and trichloroethene (TCE). The focus was on (1) using (13)C to evaluate natural chlorinated ethene biodegradation and the ZVI-PRB efficiency; (2) using dual element (13)C-(37)Cl isotopic analysis to distinguish biotic from abiotic degradation of cis-dichloroethene (cis-DCE); and (3) using (13)C-(37)Cl-(2)H isotopic analysis of cis-DCE and TCE to elucidate different contaminant sources. Both biodegradation and degradation by ZVI-PRB were indicated by the metabolites that were detected and the (13)C data, with a quantitative estimate of the ZVI-PRB efficiency of less than 10% for PCE. Dual element (13)C-(37)Cl isotopic plots confirmed that biodegradation was the main process at the site including the ZVI-PRB area. Based on the carbon isotope data, approximately 45% and 71% of PCE and TCE, respectively, were estimated to be removed by biodegradation. (2)H combined with (13)C and (37)Cl seems to have identified two discrete sources contributing to the contaminant plume, indicating the potential of δ(2)H to discriminate whether a compound is of industrial origin, or whether a compound is formed as a daughter product during degradation.


Environmental Science & Technology | 2014

The Use of Alkaline Hydrolysis As a Novel Strategy for Chloroform Remediation: The Feasibility of Using Construction Wastes and Evaluation of Carbon Isotopic Fractionation.

Clara Torrentó; Carme Audí-Miró; Geneviève Bordeleau; Massimo Marchesi; Mònica Rosell; Neus Otero; Albert Soler

Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits.


Environmental Science & Technology | 2017

Carbon and Chlorine Isotope Fractionation Patterns Associated with Different Engineered Chloroform Transformation Reactions

Clara Torrentó; Jordi Palau; Diana Rodríguez-Fernández; Benjamin Heckel; Armin H. Meyer; Cristina Domènech; Mònica Rosell; Albert Soler; Martin Elsner; Daniel Hunkeler

To use compound-specific isotope analysis for confidently assessing organic contaminant attenuation in the environment, isotope fractionation patterns associated with different transformation mechanisms must first be explored in laboratory experiments. To deliver this information for the common groundwater contaminant chloroform (CF), this study investigated for the first time both carbon and chlorine isotope fractionation for three different engineered reactions: oxidative C-H bond cleavage using heat-activated persulfate, transformation under alkaline conditions (pH ∼ 12) and reductive C-Cl bond cleavage by cast zerovalent iron, Fe(0). Carbon and chlorine isotope fractionation values were -8 ± 1‰ and -0.44 ± 0.06‰ for oxidation, -57 ± 5‰ and -4.4 ± 0.4‰ for alkaline hydrolysis (pH 11.84 ± 0.03), and -33 ± 11‰ and -3 ± 1‰ for dechlorination, respectively. Carbon and chlorine apparent kinetic isotope effects (AKIEs) were in general agreement with expected mechanisms (C-H bond cleavage in oxidation by persulfate, C-Cl bond cleavage in Fe(0)-mediated reductive dechlorination and E1CB elimination mechanism during alkaline hydrolysis) where a secondary AKIECl (1.00045 ± 0.00004) was observed for oxidation. The different dual carbon-chlorine (Δδ13C vs Δδ37Cl) isotope patterns for oxidation by thermally activated persulfate and alkaline hydrolysis (17 ± 2 and 13.0 ± 0.8, respectively) vs reductive dechlorination by Fe(0) (8 ± 2) establish a base to identify and quantify these CF degradation mechanisms in the field.


Analytical Chemistry | 2017

Compound-Specific Chlorine Isotope Analysis of Tetrachloromethane and Trichloromethane by Gas Chromatography-Isotope Ratio Mass Spectrometry vs Gas Chromatography-Quadrupole Mass Spectrometry: Method Development and Evaluation of Precision and Trueness

Benjamin Heckel; Diana Rodríguez-Fernández; Clara Torrentó; Armin H. Meyer; Jordi Palau; Cristina Domènech; Mònica Rosell; Albert Soler; Daniel Hunkeler; Martin Elsner

Compound-specific chlorine isotope analysis of tetrachloromethane (CCl4) and trichloromethane (CHCl3) was explored by both, gas chromatography-isotope ratio mass spectrometry (GC-IRMS) and GC-quadrupole MS (GC-qMS), where GC-qMS was validated in an interlaboratory comparison between Munich and Neuchâtel with the same type of commercial GC-qMS instrument. GC-IRMS measurements analyzed CCl isotopologue ions, whereas GC-qMS analyzed the isotopologue ions CCl3, CCl2, CCl (of CCl4) and CHCl3, CHCl2, CHCl (of CHCl3), respectively. Lowest amount dependence (good linearity) was obtained (i) in H-containing fragment ions where interference of 35Cl- to 37Cl-containing ions was avoided; (ii) with tuning parameters favoring one predominant rather than multiple fragment ions in the mass spectra. Optimized GC-qMS parameters (dwell time 70 ms, 2 most abundant ions) resulted in standard deviations of 0.2‰ (CHCl3) and 0.4‰ (CCl4), which are only about twice as large as 0.1‰ and 0.2‰ for GC-IRMS. To compare also the trueness of both methods and laboratories, samples from CCl4 and CHCl3 degradation experiments were analyzed and calibrated against isotopically different reference standards for both CCl4 and CHCl3 (two of each). Excellent agreement confirms that true results can be obtained by both methods provided that a consistent set of isotopically characterized reference materials is used.


Science of The Total Environment | 2017

Vitamin B12 effects on chlorinated methanes-degrading microcosms: Dual isotope and metabolically active microbial populations assessment.

Diana Rodríguez-Fernández; Clara Torrentó; Miriam Guivernau; Marc Viñas; Daniel Hunkeler; Albert Soler; Cristina Domènech; Mònica Rosell

Field-derived anoxic microcosms were used to characterize chloroform (CF) and carbon tetrachloride (CT) natural attenuation to compare it with biostimulation scenarios in which vitamin B12 was added (B12/pollutant ratio of 0.01 and 0.1) by means of by-products, carbon and chlorine compound-specific stable-isotope analysis, and the active microbial community through 16S rRNA MiSeq high-throughput sequencing. Autoclaved slurry controls discarded abiotic degradation processes. B12 catalyzed CF and CT biodegradation without the accumulation of dichloromethane, carbon disulphide, or CF. The carbon isotopic fractionation value of CF (ƐCCF) with B12 was -14±4‰, and the value for chlorine (ƐClCF) was -2.4±0.4‰. The carbon isotopic fractionation values of CT (ƐCCT) were -16±6 with B12, and -13±2‰ without B12; and the chlorine isotopic fractionation values of CT (ƐClCT) were -6±3 and -4±2‰, respectively. Acidovorax, Ancylobacter, and Pseudomonas were the most metabolically active genera, whereas Dehalobacter and Desulfitobacterium were below 0.1% of relative abundance. The dual C-Cl element isotope slope (Λ=Δδ13C/Δδ37Cl) for CF biodegradation (only detected with B12, 7±1) was similar to that reported for CF reduction by Fe(0) (8±2). Several reductive pathways might be competing in the tested CT scenarios, as evidenced by the lack of CF accumulation when B12 was added, which might be linked to a major activity of Pseudomonas stutzeri; by different chlorine apparent kinetic isotope effect values and Λ which was statistically different with and without B12 (5±1 vs 6.1±0.5), respectively. Thus, positive B12 effects such as CT and CF degradation catalyst were quantified for the first time in isotopic terms, and confirmed with the major activity of species potentially capable of their degradation. Moreover, the indirect benefits of B12 on the degradation of chlorinated ethenes were proved, creating a basis for remediation strategies in multi-contaminant polluted sites.


Geomicrobiology Journal | 2012

Characterization of Attachment and Growth of Thiobacillus denitrificans on Pyrite Surfaces

Clara Torrentó; Jordi Urmeneta; Katrina J. Edwards; Jordi Cama

Anaerobic growth and attachment of the autotrophic denitrifying bacterium Thiobacillus denitrificans on pyrite surfaces were studied. Polished pyrite slabs were exposed to T. denitrificans for 1 to 9 weeks. The reacted pyrite surfaces were imaged with scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Cells were observed as isolated attached cells, cells in division and cells forming microcolonies embedded in organic films. Bacteria began to colonize pyrite surfaces after 1 week, forming microcolonies after 3 weeks. The rate of colonization of the pyrite surface was around 35 cells mm−2 h−1 for the 3-week period. After 9 weeks, larger areas of the pyrite surface were covered by organic films. Bacterial enumeration on the pyrite surface and in solution showed that most of the cells were not attached to the mineral surface. Nevertheless, both attached and free-living bacteria probably contributed to pyrite-driven denitrification. The results may be applied to the natural environment to better understand pyrite-driven denitrification in aquifers and to improve the long-term performance of bioremediation processes using pyrite.


Journal of Contaminant Hydrology | 2017

Feasibility of two low-cost organic substrates for inducing denitrification in artificial recharge ponds: batch and flow-through experiments

Alba Grau-Martínez; Clara Torrentó; R. Carrey; Paula Rodríguez-Escales; Cristina Domènech; Giorgio Ghiglieri; Albert Soler; Neus Otero

Anaerobic batch and flow-through experiments were performed to assess the capacity of two organic substrates to promote denitrification of nitrate-contaminated groundwater within managed artificial recharge systems (MAR) in arid or semi-arid regions. Denitrification in MAR systems can be achieved through artificial recharge ponds coupled with a permeable reactive barrier in the form of a reactive organic layer. In arid or semi-arid regions, short-term efficient organic substrates are required due to the short recharge periods. We examined the effectiveness of two low-cost, easily available and easily handled organic substrates, commercial plant-based compost and crushed palm tree leaves, to determine the feasibility of using them in these systems. Chemical and multi-isotopic monitoring (δ15NNO3, δ18ONO3, δ34SSO4, δ18OSO4) of the laboratory experiments confirmed that both organic substrates induced denitrification. Complete nitrate removal was achieved in all the experiments with a slight transient nitrite accumulation. In the flow-through experiments, ammonium release was observed at the beginning of both experiments and lasted longer for the experiment with palm tree leaves. Isotopic characterisation of the released ammonium suggested ammonium leaching from both organic substrates at the beginning of the experiments and pointed to ammonium production by DNRA for the palm tree leaves experiment, which would only account for a maximum of 15% of the nitrate attenuation. Sulphate reduction was achieved in both column experiments. The amount of organic carbon consumed during denitrification and sulphate reduction was 0.8‰ of the total organic carbon present in commercial compost and 4.4% for the palm tree leaves. The N and O isotopic fractionation values obtained (εN and εO) were -10.4‰ and -9.0‰ for the commercial compost (combining data from both batch and column experiments), and -9.9‰ and -8.6‰ for the palm tree column, respectively. Both materials showed a satisfactory capacity for denitrification, but the palm tree leaves gave a higher denitrification rate and yield (amount of nitrate consumed per amount of available C) than commercial compost.


Science of The Total Environment | 2018

Unravelling long-term source removal effects and chlorinated methanes natural attenuation processes by C and Cl stable isotopic patterns at a complex field site

Diana Rodríguez-Fernández; Clara Torrentó; Jordi Palau; Massimo Marchesi; Albert Soler; Daniel Hunkeler; Cristina Domènech; Mònica Rosell

The effects of contaminant sources removal in 2005 (i.e. barrels, tank, pit and wastewater pipe sources) on carbon tetrachloride (CT) and chloroform (CF) concentration in groundwater were assessed at several areas of a fractured multi-contaminant aquifer (Òdena, Spain) over a long-term period (2010-2014). Changes in redox conditions, in these chlorinated methanes (CMs) concentration and in their carbon isotopic compositions (δ13C) were monitored in multilevel wells. δ13C values from these wells were compared to those obtained from sources (barrels, tank and pit before their removal, 2002-2005) and to commercial solvents values in literature. Additionally, CMs natural attenuation processes were identified by C-Cl isotope slopes (Λ). Analyses revealed the downstream migration of the pollutant focus and an efficient removal of DNAPLs in the pit sources influence area. However, the removal of the contaminated soil from former tank and wastewater pipe was incomplete as leaching from unsaturated zone was proved, evidencing these areas are still active sources. Nevertheless, significant CMs degradation was detected close to all sources and Λ values pointed to different reactions. For CT in the tank area, Λ value fitted with hydrogenolysis pathway although other possible reduction processes were also uncovered. Near the wastewater pipe area, CT thiolytic reduction combined with hydrogenolysis was derived. The highest CT degradation extent accounted for these areas was 72 ± 11% and 84 ± 6%, respectively. For CF, the Λ value in the pit sources area was consistent with oxidation and/or with transport of CF affected by alkaline hydrolysis from upstream interception trenches. In contrast, isotope data evidenced CF reduction in the tank and wastewater pipe influence areas, although the observed Λ slightly deviates from the reference values, likely due to the continuous leaching of CF degraded in the non-saturated zone by a mechanism different from reduction.


Chemosphere | 2018

Dual element (C Cl) isotope approach to distinguish abiotic reactions of chlorinated methanes by Fe(0) and by Fe(II) on iron minerals at neutral and alkaline pH

Diana Rodríguez-Fernández; Benjamin Heckel; Clara Torrentó; Armin H. Meyer; Martin Elsner; Daniel Hunkeler; Albert Soler; Mònica Rosell; Cristina Domènech

A dual element CCl isotopic study was performed for assessing chlorinated methanes (CMs) abiotic transformation reactions mediated by iron minerals and Fe(0) to further distinguish them in natural attenuation monitoring or when applying remediation strategies in polluted sites. Isotope fractionation was investigated during carbon tetrachloride (CT) and chloroform (CF) degradation in anoxic batch experiments with Fe(0), with FeCl2(aq), and with Fe-bearing minerals (magnetite, Mag and pyrite, Py) amended with FeCl2(aq), at two different pH values (7 and 12) representative of field and remediation conditions. At pH 7, only CT batches with Fe(0) and Py underwent degradation and CF accumulation evidenced hydrogenolysis. With Py, thiolytic reduction was revealed by CS2 yield and is a likely reason for different Λ value (Δδ13C/Δδ37Cl) comparing with Fe(0) experiments at pH 7 (2.9 ± 0.5 and 6.1 ± 0.5, respectively). At pH 12, all CT experiments showed degradation to CF, again with significant differences in Λ values between Fe(0) (5.8 ± 0.4) and Fe-bearing minerals (Mag, 2 ± 1, and Py, 3.7 ± 0.9), probably evidencing other parallel pathways (hydrolytic and thiolytic reduction). Variation of pH did not significantly affect the Λ values of CT degradation by Fe(0) nor Py. CF degradation by Fe(0) at pH 12 showed a Λ (8 ± 1) similar to that reported at pH 7 (8 ± 2), suggesting CF hydrogenolysis as the main reaction and that CF alkaline hydrolysis (13.0 ± 0.8) was negligible. Our data establish a base for discerning the predominant or combined pathways of CMs natural attenuation or for assessing the effectiveness of remediation strategies using recycled minerals or Fe(0).


Geochimica et Cosmochimica Acta | 2006

The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite

Patricia Acero; Carlos Ayora; Clara Torrentó; José-Miguel Nieto

Collaboration


Dive into the Clara Torrentó's collaboration.

Top Co-Authors

Avatar

Albert Soler

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Neus Otero

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jordi Cama

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Jordi Palau

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge