Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare E. Gallon is active.

Publication


Featured researches published by Clare E. Gallon.


Journal of Molecular and Cellular Cardiology | 2008

Myosin binding protein C phosphorylation in normal, hypertrophic and failing human heart muscle

Adam Jacques; O'Neal Copeland; Andrew E. Messer; Clare E. Gallon; Katie King; William J. McKenna; Victor Tsang; Steven B. Marston

Phosphorylation of myosin binding protein C (MyBP-C) was investigated in intraventricular septum samples taken from patients with hypertrophic cardiomyopathy undergoing surgical septal myectomy. These samples were compared with donor heart muscle, as a well-characterised control tissue, and with end-stage failing heart muscle. MyBP-C was partly purified from myofibrils using a modification of the phosphate-EDTA extraction of Hartzell and Glass. MyBP-C was separated by SDS-PAGE and stained for phosphoproteins using Pro-Q Diamond followed by total protein staining using Coomassie Blue. Relative phosphorylation level was determined from the ratio of Pro-Q Diamond to Coomassie Blue staining of MyBP-C bands as measured by densitometry. We compared 9 myectomy samples and 9 failing heart samples with 9 donor samples. MyBP-C phosphorylation in pathological muscle was lower than in donor (myectomy 40+/-2% of donor, P<0.0001; failing 45+/-3% of donor, P<0.0001). 6 myectomy samples were identified with MYBPC3 mutations, one with MYH7 mutation and two remained unknown, but there was no correlation between MYBPC3 mutation and MyBP-C phosphorylation level. In order to determine the number of phosphorylated sites in human cardiac MyBP-C samples, we phosphorylated the recombinant MyBP-C fragment, C0-C2 (1-453) with PKA using (gamma32)P-ATP up to 3.5 mol Pi/mol C0-C2. This measurement of phosphorylation was used to calibrate measurements of phosphorylation in SDS-PAGE using Pro-Q Diamond stain. The level of phosphorylation in donor heart MyBP-C was calculated to be 4.6+/-0.6 mol Pi/mol and 2.0+/-0.3 mol Pi/mol in myectomy samples. We conclude that MyBP-C is a highly phosphorylated protein in vivo and that diminished MyBP-C phosphorylation is a feature of both end-stage heart failure and hypertrophic cardiomyopathy.


Proteomics Clinical Applications | 2009

The use of phosphate-affinity SDS-PAGE to measure the cardiac troponin I phosphorylation site distribution in human heart muscle

Andrew E. Messer; Clare E. Gallon; William J. McKenna; Cristobal G. dos Remedios; Steven B. Marston

We have used phosphate affinity SDS‐PAGE to separate the phosphorylated species of cardiac troponin I (cTnI). To test the method we phosphorylated pure cTnI with protein kinase A catalytic subunit and observed up to six bands corresponding to 0, 1P, 2P, 3P, 4P and 5P phospho‐species. We examined the phospho‐species of cTnI in human heart myofibrillar extracts by phosphate affinity SDS‐PAGE and Western blotting with a non‐specific troponin I (TnI) antibody. In donor heart samples the bis‐phosphorylated species of cTnI predominated and no more highly phosphorylated species were not detectable (0P was 10.3±1.9%, 1P, 17.5±3.5%, 2P, 72.2±4.7%, 11 samples). Total phosphorylation was 1.62±0.06 molsPi/mol TnI. In myofibrils from end‐stage failing hearts, the unphosphorylated cTnI species predominated (0P was 78.5±1.8%, 1P, 17.5±1.9%, 2P, 4.0±0.7%, total phosphorylation 0.26±0.02 molsPi/mol TnI, five samples). Muscle from patients with hypertrophic obstructive cardiomyopathy was also largely unphosphorylated (0P was 76.6±3.1%, 1P, 17.5±2.7%, 2P, 5.9±0.8%, total phosphorylation 0.29±0.04 molsPi/mol TnI, 19 samples). Using a range of phospho‐specific antibodies we demonstrated that 3/4 of the bis‐phosphorylated band of donor heart cTnI is phosphorylated at Ser22 and Ser23 in approximately equal amounts and that phosphorylation of Ser43 and Thr142 was not detected.


Cardiovascular Research | 2008

The molecular phenotype of human cardiac myosin associated with hypertrophic obstructive cardiomyopathy

Adam Jacques; N Briceno; Andrew E. Messer; Clare E. Gallon; S Jalilzadeh; E Garcia; G Kikonda-Kanda; J Goddard; Sian E. Harding; Hugh Watkins; Mt Esteban; Victor Tsang; William J. McKenna; Steven B. Marston

Abstract Aim The aim of the study was to compare the functional and structural properties of the motor protein, myosin, and isolated myocyte contractility in heart muscle excised from hypertrophic cardiomyopathy patients by surgical myectomy with explanted failing heart and non-failing donor heart muscle. Methods Myosin was isolated and studied using an in vitro motility assay. The distribution of myosin light chain-1 isoforms was measured by two-dimensional electrophoresis. Myosin light chain-2 phosphorylation was measured by sodium dodecyl sulphate–polyacrylamide gel electrophoresis using Pro-Q Diamond phosphoprotein stain. Results The fraction of actin filaments moving when powered by myectomy myosin was 21% less than with donor myosin (P = 0.006), whereas the sliding speed was not different (0.310 ± 0.034 for myectomy myosin vs. 0.305 ± 0.019 µm/s for donor myosin in six paired experiments). Failing heart myosin showed 18% reduced motility. One myectomy myosin sample produced a consistently higher sliding speed than donor heart myosin and was identified with a disease-causing heavy chain mutation (V606M). In myectomy myosin, the level of atrial light chain-1 relative to ventricular light chain-1 was 20 ± 5% compared with 11 ± 5% in donor heart myosin and the level of myosin light chain-2 phosphorylation was decreased by 30–45%. Isolated cardiomyocytes showed reduced contraction amplitude (1.61 ± 0.25 vs. 3.58 ± 0.40%) and reduced relaxation rates compared with donor myocytes (TT50% = 0.32 ± 0.09 vs. 0.17 ± 0.02 s). Conclusion Contractility in myectomy samples resembles the hypocontractile phenotype found in end-stage failing heart muscle irrespective of the primary stimulus, and this phenotype is not a direct effect of the hypertrophy-inducing mutation. The presence of a myosin heavy chain mutation causing hypertrophic cardiomyopathy can be predicted from a simple functional assay.


Circulation-heart Failure | 2009

Functional Analysis of a Unique Troponin C Mutation, GLY159ASP, that Causes Familial Dilated Cardiomyopathy, Studied in Explanted Heart Muscle

Emma Dyer; Adam Jacques; Anita C. Hoskins; Douglas G. Ward; Clare E. Gallon; Andrew E. Messer; Juan Pablo Kaski; Michael Burch; Jonathan C. Kentish; Steven B. Marston

Background—Familial dilated cardiomyopathy can be caused by mutations in the proteins of the muscle thin filament. In vitro, these mutations decrease Ca2+ sensitivity and cross-bridge turnover rate, but the mutations have not been investigated in human tissue. We studied the Ca2+-regulatory properties of myocytes and troponin extracted from the explanted heart of a patient with inherited dilated cardiomyopathy due to the cTnC G159D mutation. Methods and Results—Mass spectroscopy showed that the mutant cTnC was expressed approximately equimolar with wild-type cTnC. Contraction was compared in skinned ventricular myocytes from the cTnC G159D patient and nonfailing donor heart. Maximal Ca2+-activated force was similar in cTnC G159D and donor myocytes, but the Ca2+ sensitivity of cTnC G159D myocytes was higher (EC50 G159D/donor=0.60). Thin filaments reconstituted with skeletal muscle actin and human cardiac tropomyosin and troponin were studied by in vitro motility assay. Thin filaments containing the mutation had a higher Ca2+ sensitivity (EC50 G159D/donor=0.55±0.13), whereas the maximally activated sliding speed was unaltered. In addition, the cTnC G159D mutation blunted the change in Ca2+ sensitivity when TnI was dephosphorylated. With wild-type troponin, Ca2+ sensitivity was increased (EC50 P/unP=4.7±1.9) but not with cTnC G159D troponin (EC50 P/unP=1.2±0.1). Conclusions—We propose that uncoupling of the relationship between phosphorylation and Ca2+ sensitivity could be the cause of the dilated cardiomyopathy phenotype. The differences between these data and previous in vitro results show that native phosphorylation of troponin I and troponin T and other posttranslational modifications of sarcomeric proteins strongly influence the functional effects of a mutation.


Cardiovascular Research | 2013

Myofibrillar Ca2+-Sensitivity Is Uncoupled From Troponin I Phosphorylation In Hypertrophic Obstructive Cardiomyopathy Due To Abnormal Troponin T

Christopher R. Bayliss; Adam Jacques; Man-Ching Leung; Douglas G. Ward; Charles Redwood; Clare E. Gallon; O'Neal Copeland; William J. McKenna; Cristobal G. dos Remedios; Steven B. Marston; Andrew E. Messer

AIMS We studied the relationship between myofilament Ca(2+) sensitivity and troponin I (TnI) phosphorylation by protein kinase A at serines 22/23 in human heart troponin isolated from donor hearts and from myectomy samples from patients with hypertrophic obstructive cardiomyopathy (HOCM). METHODS AND RESULTS We used a quantitative in vitro motility assay. With donor heart troponin, Ca(2+) sensitivity is two- to three-fold higher when TnI is unphosphorylated. In the myectomy samples from patients with HOCM, the mean level of TnI phosphorylation was low: 0.38 ± 0.19 mol Pi/mol TnI compared with 1.60 ± 0.19 mol Pi/mol TnI in donor hearts, but no difference in myofilament Ca(2+) sensitivity was observed. Thus, troponin regulation of thin filament Ca(2+) sensitivity is abnormal in HOCM hearts. HOCM troponin (0.29 mol Pi/mol TnI) was treated with protein kinase A to increase the level of phosphorylation to 1.56 mol Pi/mol TnI. No difference in EC(50) was found in thin filaments containing high and low TnI phosphorylation levels. This indicates that Ca(2+) sensitivity is uncoupled from TnI phosphorylation in HOCM heart troponin. Coupling could be restored by replacing endogenous troponin T (TnT) with the recombinant TnT T3 isoform. No difference in Ca(2+) sensitivity was observed if TnI was exchanged into HOCM heart troponin or if TnT was exchanged into the highly phosphorylated donor heart troponin. Comparison of donor and HOCM heart troponin by mass spectrometry and with adduct-specific antibodies did not show any differences in TnT isoform expression, phosphorylation or any post-translational modifications. CONCLUSION An abnormality in TnT is responsible for uncoupling myofibrillar Ca(2+) sensitivity from TnI phosphorylation in the septum of HOCM patients.


Journal of Molecular Biology | 2013

The Tropomyosin Binding Region of Cardiac Troponin T Modulates Crossbridge Recruitment Dynamics in Rat Cardiac Muscle Fibers

Sampath K. Gollapudi; Clare E. Gallon; Murali Chandra

The cardiac muscle comprises dynamically interacting components that use allosteric/cooperative mechanisms to yield unique heart-specific properties. An essential protein in this allosteric/cooperative mechanism is cardiac muscle troponin T (cTnT), the central region (CR) and the T2 region of which differ significantly from those of fast skeletal muscle troponin T (fsTnT). To understand the biological significance of such sequence heterogeneity, we replaced the T1 or T2 domain of rat cTnT (RcT1 or RcT2) with its counterpart from rat fsTnT (RfsT1or RfsT2) to generate RfsT1-RcT2 and RcT1-RfsT2 recombinant proteins. In addition to contractile function measurements, dynamic features of RfsT1-RcT2- and RcT1-RfsT2-reconstituted rat cardiac muscle fibers were captured by fitting the recruitment-distortion model to the force response of small-amplitude (0.5%) muscle length changes. RfsT1-RcT2 fibers showed a 40% decrease in tension and a 44% decrease in ATPase activity, but RcT1-RfsT2 fibers were unaffected. The magnitude of length-mediated increase in crossbridge (XB) recruitment (E0) decreased by ~33% and the speed of XB recruitment (b) increased by ~100% in RfsT1-RcT2 fibers. Our data suggest the following: (1) the CR of cTnT modulates XB recruitment dynamics; (2) the N-terminal end region of cTnT has a synergistic effect on the ability of the CR to modulate XB recruitment dynamics; (3) the T2 region is important for tuning the Ca(2+) regulation of cardiac thin filaments. The combined effects of CR-tropomyosin interactions and the modulating effect of the N-terminal end of cTnT on CR-tropomyosin interactions may lead to the emergence of a unique property that tunes contractile dynamics to heart rates.


Journal of Biological Chemistry | 2005

The Regulatory Effects of Tropomyosin and Troponin-I on the Interaction of Myosin Loop Regions with F-actin

Valerie B. Patchell; Clare E. Gallon; James S. Evans; Yuan Gao; S. Victor Perry; Barry A. Levine

The N terminus of skeletal myosin light chain 1 and the cardiomyopathy loop of human cardiac myosin have been shown previously to bind to actin in the presence and absence of tropomyosin (Patchell, V. B., Gallon, C. E., Hodgkin, M. A., Fattoum, A., Perry, S. V., and Levine, B. A. (2002) Eur. J. Biochem. 269, 5088–5100). We have extended this work and have shown that segments corresponding to other regions of human cardiac β-myosin, presumed to be sites of interaction with F-actin (residues 554–584, 622–646, and 633–660), likewise bind independently to actin under similar conditions. The binding to F-actin of a peptide spanning the minimal inhibitory segment of human cardiac troponin I (residues 134–147) resulted in the dissociation from F-actin of all the myosin peptides bound to it either individually or in combination. Troponin C neutralized the effect of the inhibitory peptide on the binding of the myosin peptides to F-actin. We conclude that the binding of the inhibitory region of troponin I to actin, which occurs during relaxation in muscle when the calcium concentration is low, imposes conformational changes that are propagated to different locations on the surface of actin. We suggest that the role of tropomyosin is to facilitate the transmission of structural changes along the F-actin filament so that the monomers within a structural unit are able to interact with myosin.


Journal of Muscle Research and Cell Motility | 2008

Current techniques for the study of troponin I phosphorylation in human heart.

Clare E. Gallon

Cardiac troponin I phosphorylation has been shown to be reduced in human heart failure and hypertrophic cardiomyopathy using the increasingly popular Pro-Q® Diamond phosphoprotein gel stain. In this brief report I discuss the use of Western immunoblotting, non-equilibrium isoelectric focussing and Pro-Q® Diamond and introduce phosphate affinity SDS–PAGE using Phos-tag™-acrylamide for the investigation of troponin I phosphorylation.


Biochemistry | 2004

Characterization of the interaction between the N-terminal extension of human cardiac troponin I and troponin C.

Douglas G. Ward; Susan M. Brewer; Melanie Calvert; Clare E. Gallon; Yuan Gao; Ian P. Trayer


Biochemistry | 2004

NMR and mutagenesis studies on the phosphorylation region of human cardiac troponin I.

Douglas G. Ward; Susan M. Brewer; Clare E. Gallon; Yuan Gao; Barry A. Levine; Ian P. Trayer

Collaboration


Dive into the Clare E. Gallon's collaboration.

Top Co-Authors

Avatar

Andrew E. Messer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steven B. Marston

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Adam Jacques

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sian E. Harding

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor Tsang

University College London

View shared research outputs
Top Co-Authors

Avatar

Yuan Gao

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Edwin Garcia

Imperial College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge