Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare Kelly is active.

Publication


Featured researches published by Clare Kelly.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Precuneus shares intrinsic functional architecture in humans and monkeys

Daniel S. Margulies; Justin L. Vincent; Clare Kelly; Gabriele Lohmann; Lucina Q. Uddin; Bharat B. Biswal; Arno Villringer; F. Xavier Castellanos; Michael P. Milham; Michael Petrides

Evidence from macaque monkey tracing studies suggests connectivity-based subdivisions within the precuneus, offering predictions for similar subdivisions in the human. Here we present functional connectivity analyses of this region using resting-state functional MRI data collected from both humans and macaque monkeys. Three distinct patterns of functional connectivity were demonstrated within the precuneus of both species, with each subdivision suggesting a discrete functional role: (i) the anterior precuneus, functionally connected with the superior parietal cortex, paracentral lobule, and motor cortex, suggesting a sensorimotor region; (ii) the central precuneus, functionally connected to the dorsolateral prefrontal, dorsomedial prefrontal, and multimodal lateral inferior parietal cortex, suggesting a cognitive/associative region; and (iii) the posterior precuneus, displaying functional connectivity with adjacent visual cortical regions. These functional connectivity patterns were differentiated from the more ventral networks associated with the posterior cingulate, which connected with limbic structures such as the medial temporal cortex, dorsal and ventromedial prefrontal regions, posterior lateral inferior parietal regions, and the lateral temporal cortex. Our findings are consistent with predictions from anatomical tracer studies in the monkey, and provide support that resting-state functional connectivity (RSFC) may in part reflect underlying anatomy. These subdivisions within the precuneus suggest that neuroimaging studies will benefit from treating this region as anatomically (and thus functionally) heterogeneous. Furthermore, the consistency between functional connectivity networks in monkeys and humans provides support for RSFC as a viable tool for addressing cross-species comparisons of functional neuroanatomy.


NeuroImage | 2010

Reliable intrinsic connectivity networks: Test–retest evaluation using ICA and dual regression approach

Xi-Nian Zuo; Clare Kelly; Jonathan S. Adelstein; Donald F. Klein; F. Xavier Castellanos; Michael P. Milham

Functional connectivity analyses of resting-state fMRI data are rapidly emerging as highly efficient and powerful tools for in vivo mapping of functional networks in the brain, referred to as intrinsic connectivity networks (ICNs). Despite a burgeoning literature, researchers continue to struggle with the challenge of defining computationally efficient and reliable approaches for identifying and characterizing ICNs. Independent component analysis (ICA) has emerged as a powerful tool for exploring ICNs in both healthy and clinical populations. In particular, temporal concatenation group ICA (TC-GICA) coupled with a back-reconstruction step produces participant-level resting state functional connectivity maps for each group-level component. The present work systematically evaluated the test-retest reliability of TC-GICA derived RSFC measures over the short-term (<45 min) and long-term (5-16 months). Additionally, to investigate the degree to which the components revealed by TC-GICA are detectable via single-session ICA, we investigated the reproducibility of TC-GICA findings. First, we found moderate-to-high short- and long-term test-retest reliability for ICNs derived by combining TC-GICA and dual regression. Exceptions to this finding were limited to physiological- and imaging-related artifacts. Second, our reproducibility analyses revealed notable limitations for template matching procedures to accurately detect TC-GICA based components at the individual scan level. Third, we found that TC-GICA components reliability and reproducibility ranks are highly consistent. In summary, TC-GICA combined with dual regression is an effective and reliable approach to exploratory analyses of resting state fMRI data.


American Journal of Psychiatry | 2012

Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies.

Samuele Cortese; Clare Kelly; Camille Chabernaud; Erika Proal; Adriana Di Martino; Michael P. Milham; F. Xavier Castellanos

OBJECTIVE The authors performed a comprehensive meta-analysis of task-based functional MRI studies of attention deficit hyperactivity disorder (ADHD). METHOD The authors searched PubMed, Ovid, EMBASE, Web of Science, ERIC, CINAHAL, and NeuroSynth for studies published through June 30, 2011. Significant differences in brain region activation between individuals with ADHD and comparison subjects were detected using activation likelihood estimation meta-analysis. Dysfunctional regions in ADHD were related to seven reference neuronal systems. The authors performed a set of meta-analyses focused on age groups (children and adults), clinical characteristics (history of stimulant treatment and presence of psychiatric comorbidities), and specific neuropsychological tasks (inhibition, working memory, and vigilance/attention). RESULTS Fifty-five studies were included (39 for children and 16 for adults). In children, hypoactivation in ADHD relative to comparison subjects was observed mostly in systems involved in executive function (frontoparietal network) and attention (ventral attentional network). Significant hyperactivation in ADHD relative to comparison subjects was observed predominantly in the default, ventral attention, and somatomotor networks. In adults, ADHD-related hypoactivation was predominant in the frontoparietal system, while ADHD-related hyperactivation was present in the visual, dorsal attention, and default networks. Significant ADHD-related dysfunction largely reflected task features and was detected even in the absence of comorbid mental disorders or a history of stimulant treatment. CONCLUSIONS A growing literature provides evidence of ADHD-related dysfunction in multiple neuronal systems involved in higher-level cognitive functions but also in sensorimotor processes, including the visual system, and in the default network. This meta-analytic evidence extends early models of ADHD pathophysiology that were focused on prefrontal-striatal circuits.


The Journal of Neuroscience | 2010

Growing together and growing apart: Regional and sex differences in the lifespan developmental trajectories of functional homotopy

Xi-Nian Zuo; Clare Kelly; Adriana Di Martino; Maarten Mennes; Daniel S. Margulies; Saroja Bangaru; Rebecca Grzadzinski; Alan C. Evans; Yufeng Zang; F. Xavier Castellanos; Michael P. Milham

Functional homotopy, the high degree of synchrony in spontaneous activity between geometrically corresponding interhemispheric (i.e., homotopic) regions, is a fundamental characteristic of the intrinsic functional architecture of the brain. However, despite its prominence, the lifespan development of the homotopic resting-state functional connectivity (RSFC) of the human brain is rarely directly examined in functional magnetic resonance imaging studies. Here, we systematically investigated age-related changes in homotopic RSFC in 214 healthy individuals ranging in age from 7 to 85 years. We observed marked age-related changes in homotopic RSFC with regionally specific developmental trajectories of varying levels of complexity. Sensorimotor regions tended to show increasing homotopic RSFC, whereas higher-order processing regions showed decreasing connectivity (i.e., increasing segregation) with age. More complex maturational curves were also detected, with regions such as the insula and lingual gyrus exhibiting quadratic trajectories and the superior frontal gyrus and putamen exhibiting cubic trajectories. Sex-related differences in the developmental trajectory of functional homotopy were detected within dorsolateral prefrontal cortex (Brodmann areas 9 and 46) and amygdala. Evidence of robust developmental effects in homotopic RSFC across the lifespan should serve to motivate studies of the physiological mechanisms underlying functional homotopy in neurodegenerative and psychiatric disorders.


Frontiers in Systems Neuroscience | 2013

Distinct neural signatures detected for ADHD subtypes after controlling for micro-movements in resting state functional connectivity MRI data

Damien A. Fair; Joel T. Nigg; Swathi Iyer; Deepti Bathula; Kathryn L. Mills; Nico U.F. Dosenbach; Bradley L. Schlaggar; Maarten Mennes; David Gutman; Saroja Bangaru; Jan K. Buitelaar; Daniel P. Dickstein; Adriana Di Martino; David N. Kennedy; Clare Kelly; Beatriz Luna; Julie B. Schweitzer; Katerina Velanova; Yu Feng Wang; Stewart H. Mostofsky; F. Xavier Castellanos; Michael P. Milham

In recent years, there has been growing enthusiasm that functional magnetic resonance imaging (MRI) could achieve clinical utility for a broad range of neuropsychiatric disorders. However, several barriers remain. For example, the acquisition of large-scale datasets capable of clarifying the marked heterogeneity that exists in psychiatric illnesses will need to be realized. In addition, there continues to be a need for the development of image processing and analysis methods capable of separating signal from artifact. As a prototypical hyperkinetic disorder, and movement-related artifact being a significant confound in functional imaging studies, ADHD offers a unique challenge. As part of the ADHD-200 Global Competition and this special edition of Frontiers, the ADHD-200 Consortium demonstrates the utility of an aggregate dataset pooled across five institutions in addressing these challenges. The work aimed to (1) examine the impact of emerging techniques for controlling for “micro-movements,” and (2) provide novel insights into the neural correlates of ADHD subtypes. Using support vector machine (SVM)-based multivariate pattern analysis (MVPA) we show that functional connectivity patterns in individuals are capable of differentiating the two most prominent ADHD subtypes. The application of graph-theory revealed that the Combined (ADHD-C) and Inattentive (ADHD-I) subtypes demonstrated some overlapping (particularly sensorimotor systems), but unique patterns of atypical connectivity. For ADHD-C, atypical connectivity was prominent in midline default network components, as well as insular cortex; in contrast, the ADHD-I group exhibited atypical patterns within the dlPFC regions and cerebellum. Systematic motion-related artifact was noted, and highlighted the need for stringent motion correction. Findings reported were robust to the specific motion correction strategy employed. These data suggest that resting-state functional connectivity MRI (rs-fcMRI) data can be used to characterize individual patients with ADHD and to identify neural distinctions underlying the clinical heterogeneity of ADHD.


Biological Psychiatry | 2011

Aberrant Striatal Functional Connectivity in Children with Autism

Adriana Di Martino; Clare Kelly; Rebecca Grzadzinski; Xi-Nian Zuo; Maarten Mennes; Maria Angeles Mairena; Catherine Lord; F. Xavier Castellanos; Michael P. Milham

BACKGROUND Models of autism spectrum disorders (ASD) as neural disconnection syndromes have been predominantly supported by examinations of abnormalities in corticocortical networks in adults with autism. A broader body of research implicates subcortical structures, particularly the striatum, in the physiopathology of autism. Resting state functional magnetic resonance imaging has revealed detailed maps of striatal circuitry in healthy and psychiatric populations and vividly captured maturational changes in striatal circuitry during typical development. METHODS Using resting state functional magnetic resonance imaging, we examined striatal functional connectivity (FC) in 20 children with ASD and 20 typically developing children between the ages of 7.6 and 13.5 years. Whole-brain voxelwise statistical maps quantified within-group striatal FC and between-group differences for three caudate and three putamen seeds for each hemisphere. RESULTS Children with ASD mostly exhibited prominent patterns of ectopic striatal FC (i.e., functional connectivity present in ASD but not in typically developing children), with increased functional connectivity between nearly all striatal subregions and heteromodal associative and limbic cortex previously implicated in the physiopathology of ASD (e.g., insular and right superior temporal gyrus). Additionally, we found striatal functional hyperconnectivity with the pons, thus expanding the scope of functional alterations implicated in ASD. Secondary analyses revealed ASD-related hyperconnectivity between the pons and insula cortex. CONCLUSIONS Examination of FC of striatal networks in children with ASD revealed abnormalities in circuits involving early developing areas, such as the brainstem and insula, with a pattern of increased FC in ectopic circuits that likely reflects developmental derangement rather than immaturity of functional circuits.


Nature Methods | 2013

Imaging human connectomes at the macroscale

R. Cameron Craddock; Saad Jbabdi; Chao-Gan Yan; Joshua T. Vogelstein; F. Xavier Castellanos; Adriana Di Martino; Clare Kelly; Keith Heberlein; Stan Colcombe; Michael P. Milham

At macroscopic scales, the human connectome comprises anatomically distinct brain areas, the structural pathways connecting them and their functional interactions. Annotation of phenotypic associations with variation in the connectome and cataloging of neurophenotypes promise to transform our understanding of the human brain. In this Review, we provide a survey of magnetic resonance imaging–based measurements of functional and structural connectivity. We highlight emerging areas of development and inquiry and emphasize the importance of integrating structural and functional perspectives on brain architecture.


The Journal of Neuroscience | 2009

L-dopa modulates functional connectivity in striatal cognitive and motor networks: a double-blind placebo-controlled study.

Clare Kelly; Greig I. de Zubicaray; Adriana Di Martino; David A. Copland; Philip T. Reiss; Donald F. Klein; F. Xavier Castellanos; Michael P. Milham; Katie L. McMahon

Functional connectivity (FC) analyses of resting-state fMRI data allow for the mapping of large-scale functional networks, and provide a novel means of examining the impact of dopaminergic challenge. Here, using a double-blind, placebo-controlled design, we examined the effect of l-dopa, a dopamine precursor, on striatal resting-state FC in 19 healthy young adults. We examined the FC of 6 striatal regions of interest (ROIs) previously shown to elicit networks known to be associated with motivational, cognitive and motor subdivisions of the caudate and putamen (Di Martino et al., 2008). In addition to replicating the previously demonstrated patterns of striatal FC, we observed robust effects of l-dopa. Specifically, l-dopa increased FC in motor pathways connecting the putamen ROIs with the cerebellum and brainstem. Although l-dopa also increased FC between the inferior ventral striatum and ventrolateral prefrontal cortex, it disrupted ventral striatal and dorsal caudate FC with the default mode network. These alterations in FC are consistent with studies that have demonstrated dopaminergic modulation of cognitive and motor striatal networks in healthy participants. Recent studies have demonstrated altered resting state FC in several conditions believed to be characterized by abnormal dopaminergic neurotransmission. Our findings suggest that the application of similar experimental pharmacological manipulations in such populations may further our understanding of the role of dopaminergic neurotransmission in those conditions.


Brain Research | 2006

Individual differences in the functional neuroanatomy of inhibitory control

Hugh Garavan; Robert Hester; Kevin Murphy; Catherine Fassbender; Clare Kelly

We combined the data of five event-related fMRI studies of response inhibition. The re-analysis (n = 71) revealed response inhibition to be accomplished by a largely right hemisphere network of prefrontal, parietal, subcortical and midline regions, with converging evidence pointing to the particular importance of the right frontal operculum. Functional differences were observed between the sexes with greater activity in females in many of these cortical regions. Despite the relatively narrow age range (18-46), cortical activity, on the whole, tended to increase with age, echoing a pattern of functional recruitment often observed in the elderly. More absent minded subjects showed greater activity in fronto-parietal areas, while speed of Go trial responses produced a varied pattern of activation differences in more posterior and subcortical areas. Although response inhibition produces robust activation in a discrete network of brain regions, these results reveal that individual differences impact on the relative contribution made by the nodes of this network.


NeuroImage | 2012

A Convergent Functional Architecture of the Insula Emerges Across Imaging Modalities

Clare Kelly; Roberto Toro; Adriana Di Martino; Christine L. Cox; Pierre Bellec; F. Xavier Castellanos; Michael P. Milham

Empirical evidence increasingly supports the hypothesis that patterns of intrinsic functional connectivity (iFC) are sculpted by a history of evoked coactivation within distinct neuronal networks. This, together with evidence of strong correspondence among the networks defined by iFC and those delineated using a variety of other neuroimaging techniques, suggests a fundamental brain architecture detectable across multiple functional and structural imaging modalities. Here, we leverage this insight to examine the functional organization of the human insula. We parcellated the insula on the basis of three distinct neuroimaging modalities - task-evoked coactivation, intrinsic (i.e., task-independent) functional connectivity, and gray matter structural covariance. Clustering of these three different covariance-based measures revealed a convergent elemental organization of the insula that likely reflects a fundamental brain architecture governing both brain structure and function at multiple spatial scales. While not constrained to be hierarchical, our parcellation revealed a pseudo-hierarchical, multiscale organization that was consistent with previous clustering and meta-analytic studies of the insula. Finally, meta-analytic examination of the cognitive and behavioral domains associated with each of the insular clusters obtained elucidated the broad functional dissociations likely underlying the topography observed. To facilitate future investigations of insula function across healthy and pathological states, the insular parcels have been made freely available for download via http://fcon_1000.projects.nitrc.org, along with the analytic scripts used to perform the parcellations.

Collaboration


Dive into the Clare Kelly's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xi-Nian Zuo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Maarten Mennes

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Bharat B. Biswal

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge