Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare L. Parish is active.

Publication


Featured researches published by Clare L. Parish.


Neuroscience | 2000

Axonal sprouting following lesions of the rat substantia nigra

David Finkelstein; Davor Stanic; Clare L. Parish; D. Tomas; K. Dickson; Malcolm K. Horne

Parkinsons disease is characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Symptoms do not appear until most nigral neurons are lost, implying that compensatory mechanisms are present. Sprouting has been proposed as one of these mechanisms. This study quantified the extent of compensatory axonal sprouting following injury of dopaminergic neurons within the substantia nigra pars compacta. Specifically, the extent of the axonal arbour and axonal varicosity morphology was measured after partial destruction (with 6-hydroxydopamine) of the substantia nigra of the adult male rat. Four months later, the substantia nigra was injected with the anterograde neuronal tracer dextran-biotin to trace the full extent of individual axons. An unbiased estimate of neuron number was performed in each animal. This demonstrated nigral neuronal loss ranging from 10 to 90% on the side that received the injection whilst a 7% reduction was observed in the side contralateral to the lesion. Coincident with this loss, some nigral neurons lose tyrosine hydroxylase expression. Vigorous axonal sprouting was observed in the terminal arbours of lesioned animals and was associated with an increased axonal varicosity size. Axonal varicosities and branching points were primarily confined to the dorsal 1.5mm of the caudate-putamen, an area predominantly innervated by nigral neurons. It appears that dopaminergic neurons were responsible for this sprouting because the density of dopamine transporter immunoreactive varicosities in the caudate-putamen was maintained until about a 70% loss of neurons. It was concluded that substantial compensation in the form of sprouting and new dopaminergic synapse formation occurs following lesions of the substantia nigra pars compacta.


Journal of Clinical Investigation | 2008

Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice.

Clare L. Parish; Gonçalo Castelo-Branco; Nina Rawal; Jan Tønnesen; Andreas T. Sørensen; Carmen Saltó; Merab Kokaia; Olle Lindvall; Ernest Arenas

Dopamine (DA) cell replacement therapy in Parkinson disease (PD) can be achieved using human fetal mesencephalic tissue; however, limited tissue availability has hindered further developments. Embryonic stem cells provide a promising alternative, but poor survival and risk of teratoma formation have prevented their clinical application. We present here a method for generating large numbers of DA neurons based on expanding and differentiating ventral midbrain (VM) neural stem cells/progenitors in the presence of key signals necessary for VM DA neuron development. Mouse VM neurospheres (VMNs) expanded with FGF2, differentiated with sonic hedgehog and FGF8, and transfected with Wnt5a (VMN-Wnt5a) generated 10-fold more DA neurons than did conventional FGF2-treated VMNs. VMN-Wnt5a cells exhibited the transcriptional and biochemical profiles and intrinsic electrophysiological properties of midbrain DA cells. Transplantation of these cells into parkinsonian mice resulted in significant cellular and functional recovery. Importantly, no tumors were detected and only a few transplanted grafts contained sporadic nestin-expressing progenitors. Our findings show that Wnt5a improves the differentiation and functional integration of stem cell-derived DA neurons in vivo and define Wnt5a-treated neural stem cells as an efficient and safe source of DA neurons for cell replacement therapy in PD.


Molecular and Cellular Neuroscience | 2002

Macrophages and Microglia Produce Local Trophic Gradients That Stimulate Axonal Sprouting Toward but Not beyond the Wound Edge

Peter Batchelor; Michelle J Porritt; P Martinello; Clare L. Parish; Gabriel T. Liberatore; Geoffrey A. Donnan; David W. Howells

Following injury to the mammalian CNS, axons sprout in the vicinity of the wound margin. Growth then ceases and axons fail to cross the lesion site. In this study, using dopaminergic sprouting in the injured striatum as a model system, we have examined the relationship of periwound sprouting fibers to reactive glia and macrophages. In the first week after injury we find that sprouting fibers form intimate relationships with activated microglia as they traverse toward the wound edge. Once at the wound edge, complicated plexuses of fibers form around individual macrophages. Axons, however, fail to grow further into the interior of the wound despite the presence of many macrophages in this location. We find that the expression of BDNF by activated microglia progressively increases as the wound edge is approached, while GDNF expression by macrophages is highest at the immediate wound margin. In contrast, the expression of both factors is substantially reduced within the macrophage-filled interior of the wound. Our data suggest that periwound sprouting fibers grow toward the wound margin along an increasing trophic gradient generated by progressively microglial and macrophage activation. Once at the wound edge, sprouting ceases over macrophages at the point of maximal neurotrophic factor expression and further axonal growth into the relatively poor trophic environment of the wound core fails to occur.


Stem Cells and Development | 2010

Three-Dimensional Nanofibrous Scaffolds Incorporating Immobilized BDNF Promote Proliferation and Differentiation of Cortical Neural Stem Cells

Malcolm K. Horne; David R. Nisbet; John S. Forsythe; Clare L. Parish

Attempts to repair the central nervous system damaged as a result of trauma or disease will depend on the ability to restore the appropriate neuronal connectivity. This will rely on establishing appropriate chemical and physical environments for supporting neural cells and their processes and in this regard, engineering of biomaterials is of increasing interest. It will be important to understand how cells behave on these biomaterials in vitro, prior to future in vivo application. We reveal that modification of 3-dimensional (3D) electrospun poly-epsilon-caprolactone (PCL) nanofiber scaffolds by fiber alignment and aminolysation is superior to classical 2-dimensional (2D) culture-ware in promoting in vitro proliferation and differentiation of cortical cells. Many studies have examined the importance of exogenous soluble factors to promote cell fate specification. Here, we demonstrate that tethering the neurotrophin, brain-derived neurotrophic factor (BDNF), onto modified nanofibers is superior to culturing in the presence of soluble BDNF. Functional immobilization of BDNF to polymer nanofibers enhances neural stem cell (NSC) proliferation and directs cell fate toward neuronal and oligodendrocyte specification, essential for neural tissue repair. These findings indicate that modified PCL nanofibrous 3D scaffolds are capable of supporting NSCs and their derivatives and may present a new avenue for encouraging neural repair in the future.


The Journal of Neuroscience | 2001

The Role of Dopamine Receptors in Regulating the Size of Axonal Arbors

Clare L. Parish; David Finkelstein; John Drago; E. Borrelli; Malcolm K. Horne

Factors that regulate terminal arbor size of substantia nigra pars compacta (SNpc) neurons during development and after injury are not well understood. This study examined the role of dopamine receptors in regulating arbor size. Terminal arbors were examined in mice with targeted deletion of the D1 or D2 dopamine receptor [D1(-/-) and D2(-/-) mice, respectively]. Terminal trees were also examined after treatment with receptor blockers and after partial SNpc lesions. Immunohistochemistry was performed, and the number of SNpc neurons and dopaminergic terminals in the striatum was estimated. The number of dopaminergic SNpc neurons were reduced in D1(-/-) and D2(-/-) mice. Density of dopaminergic terminals was unchanged in D1(-/-) mice and increased in D2 (-/-) mice. Steady-state striatal DA and DOPAC levels revealed that dopamine activity was enhanced in D2(-/-) mice but reduced in D1(-/-) mice. Two months after partial SNpc lesions, striatal terminal density was normal in both wild-type and D1(-/-) mice but reduced in D2(-/-) mice. Administration of DA receptor antagonists resulted in larger terminal arbors in D1(-/-) and wild-type mice, whereas D2(-/-) mice showed no change in terminal density. Functional blockade of the D2R during development or in the adult brain results in increased axonal sprouting. Partial SNpc lesions resulted in compensatory sprouting, only in mice with functional D2R. These results suggest that individual dopaminergic axons in D2(-/-) mice have reached maximal arbor size. We conclude that the D2 receptor may play a role in modulating the extent of the terminal arbor of SNpc neurons.


Cell Stem Cell | 2009

Liver X Receptors and Oxysterols Promote Ventral Midbrain Neurogenesis In Vivo and in Human Embryonic Stem Cells

Paola Sacchetti; Kyle M. Sousa; Anita C. Hall; Isabel Liste; Knut R. Steffensen; Spyridon Theofilopoulos; Clare L. Parish; Carin Hazenberg; Lars Ährlund Richter; Outti Hovatta; Jan Åke Gustafsson; Ernest Arenas

Control over progenitor proliferation and neurogenesis remains a key challenge for stem cell neurobiology and a prerequisite for successful stem cell replacement therapies for neurodegenerative diseases like Parkinsons disease (PD). Here, we examined the function of two nuclear receptors, liver X receptors (Lxralpha and beta) and their ligands, oxysterols, as regulators of cell division, ventral midbrain (VM) neurogenesis, and dopaminergic (DA) neuron development. Deletion of Lxrs reduced cell cycle progression and VM neurogenesis, resulting in decreased DA neurons at birth. Activation of Lxrs with oxysterol ligands increased the number of DA neurons in mouse embryonic stem cells (ESCs) and in wild-type but not Lxralphabeta(-/-) VM progenitor cultures. Likewise, oxysterol treatment of human ESCs (hESCs) during DA differentiation increased neurogenesis and the number of mature DA neurons, while reducing proliferating progenitors. Thus, Lxr ligands may improve current hESC replacement strategies for PD by selectively augmenting the generation of DA neurons.


PLOS ONE | 2011

Wnt5a regulates midbrain dopaminergic axon growth and guidance.

Brette Blakely; Christopher R. Bye; Chathurini V. Fernando; Malcolm K. Horne; Maria L. Macheda; Steven A. Stacker; Ernest Arenas; Clare L. Parish

During development, precise temporal and spatial gradients are responsible for guiding axons to their appropriate targets. Within the developing ventral midbrain (VM) the cues that guide dopaminergic (DA) axons to their forebrain targets remain to be fully elucidated. Wnts are morphogens that have been identified as axon guidance molecules. Several Wnts are expressed in the VM where they regulate the birth of DA neurons. Here, we describe that a precise temporo-spatial expression of Wnt5a accompanies the development of nigrostriatal projections by VM DA neurons. In mice at E11.5, Wnt5a is expressed in the VM where it was found to promote DA neurite and axonal growth in VM primary cultures. By E14.5, when DA axons are approaching their striatal target, Wnt5a causes DA neurite retraction in primary cultures. Co-culture of VM explants with Wnt5a-overexpressing cell aggregates revealed that Wnt5a is capable of repelling DA neurites. Antagonism experiments revealed that the effects of Wnt5a are mediated by the Frizzled receptors and by the small GTPase, Rac1 (a component of the non-canonical Wnt planar cell polarity pathway). Moreover, the effects were specific as they could be blocked by Wnt5a antibody, sFRPs and RYK-Fc. The importance of Wnt5a in DA axon morphogenesis was further verified in Wnt5a −/− mice, where fasciculation of the medial forebrain bundle (MFB) as well as the density of DA neurites in the MFB and striatal terminals were disrupted. Thus, our results identify a novel role of Wnt5a in DA axon growth and guidance.


Stem Cells | 2006

An Efficient Method for the Derivation of Mouse Embryonic Stem Cells

Vitezslav Bryja; Sonia Bonilla; Lukas Cajanek; Clare L. Parish; Catherine M. Schwartz; Yongquan Luo; Mahendra S. Rao; Ernest Arenas

Mouse embryonic stem cells (mESCs) represent a unique tool for many researchers; however, the process of ESC derivation is often very inefficient and requires high specialization, training, and expertise. To circumvent these limitations, we aimed to develop a simple and efficient protocol based on the use of commercially available products. Here, we present an optimized protocol that we successfully applied to derive ESCs from several knockout mouse strains (Wnt‐1, Wnt‐5a, Lrp6, and parkin) with 50%–75% efficiency. The methodology is based on the use of mouse embryonic fibroblast feeders, knockout serum replacement (SR), and minimal handling of the blastocyst. In this protocol, all centrifugation steps (as well as the use of trypsin inhibitor) were avoided and replaced by an ESC medium containing fetal calf serum (FCS) after the trypsinizations. We define the potential advantages and disadvantages of using SR and FCS in individual steps of the protocol. We also characterize the ESCs for the expression of ESC markers by immunohistochemistry, Western blot, and a stem cell focused microarray. In summary, we provide a simplified and improved protocol to derive mESCs that can be useful for laboratories aiming to isolate transgenic mESCs for the first time.


PLOS ONE | 2011

Functional Integration of Grafted Neural Stem Cell-Derived Dopaminergic Neurons Monitored by Optogenetics in an In Vitro Parkinson Model

Jan Tønnesen; Clare L. Parish; Andreas T. Sørensen; Angelica Andersson; Cecilia Lundberg; Karl Deisseroth; Ernest Arenas; Olle Lindvall; Merab Kokaia

Intrastriatal grafts of stem cell-derived dopamine (DA) neurons induce behavioral recovery in animal models of Parkinsons disease (PD), but how they functionally integrate in host neural circuitries is poorly understood. Here, Wnt5a-overexpressing neural stem cells derived from embryonic ventral mesencephalon of tyrosine hydroxylase-GFP transgenic mice were expanded as neurospheres and transplanted into organotypic cultures of wild type mouse striatum. Differentiated GFP-labeled DA neurons in the grafts exhibited mature neuronal properties, including spontaneous firing of action potentials, presence of post-synaptic currents, and functional expression of DA D2 autoreceptors. These properties resembled those recorded from identical cells in acute slices of intrastriatal grafts in the 6-hydroxy-DA-induced mouse PD model and from DA neurons in intact substantia nigra. Optogenetic activation or inhibition of grafted cells and host neurons using channelrhodopsin-2 (ChR2) and halorhodopsin (NpHR), respectively, revealed complex, bi-directional synaptic interactions between grafted cells and host neurons and extensive synaptic connectivity within the graft. Our data demonstrate for the first time using optogenetics that ectopically grafted stem cell-derived DA neurons become functionally integrated in the DA-denervated striatum. Further optogenetic dissection of the synaptic wiring between grafted and host neurons will be crucial to clarify the cellular and synaptic mechanisms underlying behavioral recovery as well as adverse effects following stem cell-based DA cell replacement strategies in PD.


Development | 2007

Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model

Clare L. Parish; Anna Beljajeva; Ernest Arenas; András Simon

Death and lack of functional regeneration of midbrain dopaminergic (DA) neurons, decreased DA input in the target striatum and movement anomalies characterise Parkinsons disease (PD). There is currently no cure for PD. One way to promote recovery would be to induce or enhance DA neurogenesis. Whether DA neurogenesis occurs in the adult midbrain is a matter of debate. Here, we describe the creation of a salamander 6-hydroxydopamine model of PD to examine midbrain DA regeneration. We demonstrate a robust and complete regeneration of the mesencephalic and diencephalic DA system after elimination of DA neurons. Regeneration is contributed by DA neurogenesis, leads to histological restoration, and to full recovery of motor behaviour. Molecular analyses of the temporal expression pattern of DA determinants indicate that the regenerating DA neurons mature along a similar developmental program as their mammalian counterparts during embryogenesis. We also find that the adult salamander midbrain can reactivate radial glia-like ependymoglia cells that proliferate. The salamander model provides insights into the mechanisms of DA regeneration/neurogenesis and may contribute to the development of novel regenerative strategies for the mammalian brain.

Collaboration


Dive into the Clare L. Parish's collaboration.

Top Co-Authors

Avatar

Lachlan H. Thompson

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David R. Nisbet

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John Drago

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

David Finkelstein

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ting Yi Wang

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Kiara F. Bruggeman

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jessica A. Kauhausen

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Top Co-Authors

Avatar

Davor Stanic

Florey Institute of Neuroscience and Mental Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge