Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare M. Gladding is active.

Publication


Featured researches published by Clare M. Gladding.


Neuron | 2010

Early Increase in Extrasynaptic NMDA Receptor Signaling and Expression Contributes to Phenotype Onset in Huntington's Disease Mice

Austen J. Milnerwood; Clare M. Gladding; Mahmoud A. Pouladi; Alexandra M. Kaufman; Rochelle M. Hines; Jamie D. Boyd; Rebecca W.Y. Ko; Oana Cristina Vasuta; Rona K. Graham; Michael R. Hayden; Timothy H. Murphy; Lynn A. Raymond

N-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntingtons disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death. We report specifically increased extrasynaptic NMDAR expression, current, and associated reductions in nuclear CREB activation in HD mouse striatum. The changes are observed in the absence of dendritic morphological alterations, before and after phenotype onset, correlate with mutation severity, and require caspase-6 cleavage of mutant huntingtin. Moreover, pharmacological block of extrasynaptic NMDARs with memantine reversed signaling and motor learning deficits. Our data demonstrate elevated extrasynaptic NMDAR activity in an animal model of neurodegenerative disease. We provide a candidate mechanism linking several pathways previously implicated in HD pathogenesis and demonstrate successful early therapeutic intervention in mice.N-methyl-D-aspartate receptor (NMDAR) excitotoxicity is implicated in the pathogenesis of Huntingtons disease (HD), a late-onset neurodegenerative disorder. However, NMDARs are poor therapeutic targets, due to their essential physiological role. Recent studies demonstrate that synaptic NMDAR transmission drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation promotes cell death. We report specifically increased extrasynaptic NMDAR expression, current, and associated reductions in nuclear CREB activation in HD mouse striatum. The changes are observed in the absence of dendritic morphological alterations, before and after phenotype onset, correlate with mutation severity, and require caspase-6 cleavage of mutant huntingtin. Moreover, pharmacological block of extrasynaptic NMDARs with memantine reversed signaling and motor learning deficits. Our data demonstrate elevated extrasynaptic NMDAR activity in an animal model of neurodegenerative disease. We provide a candidate mechanism linking several pathways previously implicated in HD pathogenesis and demonstrate successful early therapeutic intervention in mice.


Neuroscience | 2011

Pathophysiology of Huntington's disease: time-dependent alterations in synaptic and receptor function

Lynn A. Raymond; Véronique M. André; Carlos Cepeda; Clare M. Gladding; Austen J. Milnerwood; Michael S. Levine

Huntingtons disease (HD) is a progressive, fatal neurological condition caused by an expansion of CAG (glutamine) repeats in the coding region of the Huntington gene. To date, there is no cure but great strides have been made to understand pathophysiological mechanisms. In particular, genetic animal models of HD have been instrumental in elucidating the progression of behavioral and physiological alterations, which had not been possible using classic neurotoxin models. Our groups have pioneered the use of transgenic HD mice to examine the excitotoxicity hypothesis of striatal neuronal dysfunction and degeneration, as well as alterations in excitation and inhibition in striatum and cerebral cortex. In this review, we focus on synaptic and receptor alterations of striatal medium-sized spiny (MSNs) and cortical pyramidal neurons in genetic HD mouse models. We demonstrate a complex series of alterations that are region-specific and time-dependent. In particular, many changes are bidirectional depending on the degree of disease progression, that is, early vs. late, and also on the region examined. Early synaptic dysfunction is manifested by dysregulated glutamate release in striatum followed by progressive disconnection between cortex and striatum. The differential effects of altered glutamate release on MSNs originating the direct and indirect pathways is also elucidated, with the unexpected finding that cells of the direct striatal pathway are involved early in the course of the disease. In addition, we review evidence for early N-methyl-D-aspartate receptor (NMDAR) dysfunction leading to enhanced sensitivity of extrasynaptic receptors and a critical role of GluN2B subunits. Some of the alterations in late HD could be compensatory mechanisms designed to cope with early synaptic and receptor dysfunctions. The main findings indicate that HD treatments need to be designed according to the stage of disease progression and should consider regional differences.


The Journal of Neuroscience | 2008

The Tyrosine Phosphatase STEP Mediates AMPA Receptor Endocytosis after Metabotropic Glutamate Receptor Stimulation

Yang Zhang; Deepa V. Venkitaramani; Clare M. Gladding; Yongfang Zhang; Pradeep Kurup; Elek Molnár; Graham L. Collingridge; Paul J. Lombroso

Although it is well established that AMPA receptor (AMPAR) trafficking is a central event in several forms of synaptic plasticity, the mechanisms that regulate the surface expression of AMPARs are poorly understood. Previous work has shown that striatal-enriched protein tyrosine phosphatase (STEP) mediates NMDAR endocytosis. This protein tyrosine phosphatase is enriched in the synapses of the striatum, hippocampus, cerebral cortex, and other brain regions. In the present investigation, we have explored whether STEP also regulates AMPAR internalization. We found that (RS)-3,5-dihydroxyphenylglycine (DHPG) stimulation triggered a dose-dependent increase in STEP translation in hippocampal slices and synaptoneurosomes, a process that requires stimulation of mGluR5 (metabotropic glutamate receptor 5) and activation of mitogen-activated protein kinases and phosphoinositide-3 kinase pathways. DHPG-induced AMPAR internalization and tyrosine dephosphorylation of GluR2 (glutamate receptor 2) was blocked by a substrate-trapping TAT-STEP [C/S] protein in hippocampal slices and cultures. Moreover, DHPG-triggered AMPAR internalization was abolished in STEP knock-out mice and restored after replacement of wild-type STEP. These results suggest a role for STEP in the regulation of AMPAR trafficking.


The Journal of Neuroscience | 2006

Tyrosine Phosphatases Regulate AMPA Receptor Trafficking during Metabotropic Glutamate Receptor-Mediated Long-Term Depression

Peter R. Moult; Clare M. Gladding; Thomas M. Sanderson; Stephen M. Fitzjohn; Zafar I. Bashir; Elek Molnár; Graham L. Collingridge

Two forms of long-term depression (LTD), triggered by activation of NMDA receptors (NMDARs) and metabotropic glutamate receptors (mGluRs), respectively, can be induced at CA1 synapses in the hippocampus. Compared with NMDAR-LTD, relatively little is known about mGluR-LTD. Here, we show that protein tyrosine phosphatase (PTP) inhibitors, orthovanadate and phenylarsine oxide, selectively block mGluR-LTD induced by application of the group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG-LTD), because NMDAR-LTD is unaffected by these inhibitors. Furthermore, DHPG-LTD measured using whole-cell recording is similarly blocked by either bath-applied or patch-loaded PTP inhibitors. These inhibitors also block the changes in paired-pulse facilitation and coefficient of variation that are associated with the expression of DHPG-LTD. DHPG treatment of hippocampal slices was associated with a decrease in the level of tyrosine phosphorylation of GluR2 AMPA receptor (AMPAR) subunits, an effect blocked by orthovanadate. Finally, in dissociated hippocampal neurons, orthovanadate blocked the ability of DHPG to reduce the number of AMPA receptor clusters on the surface of dendrites. Again, the effects of PTP blockade were selective, because NMDA-induced decreases in surface AMPAR clusters was unaffected by orthovanadate. Together, these data suggest that activation of postsynaptic PTP results in tyrosine dephosphorylation of AMPARs and their removal from the synapse.


Pharmacological Reviews | 2009

Metabotropic Glutamate Receptor-Mediated Long-Term Depression: Molecular Mechanisms

Clare M. Gladding; Stephen M. Fitzjohn; Elek Molnar

The ability to modify synaptic transmission between neurons is a fundamental process of the nervous system that is involved in development, learning, and disease. Thus, synaptic plasticity is the ability to bidirectionally modify transmission, where long-term potentiation and long-term depression (LTD) represent the best characterized forms of plasticity. In the hippocampus, two main forms of LTD coexist that are mediated by activation of either N-methyl-d-aspartic acid receptors (NMDARs) or metabotropic glutamate receptors (mGluRs). Compared with NMDAR-LTD, mGluR-LTD is less well understood, but recent advances have started to delineate the underlying mechanisms. mGluR-LTD at CA3:CA1 synapses in the hippocampus can be induced either by synaptic stimulation or by bath application of the group I selective agonist (R,S)-3,5-dihydroxyphenylglycine. Multiple signaling mechanisms have been implicated in mGluR-LTD, illustrating the complexity of this form of plasticity. This review provides an overview of recent studies investigating the molecular mechanisms underlying hippocampal mGluR-LTD. It highlights the role of key molecular components and signaling pathways that are involved in the induction and expression of mGluR-LTD and considers how the different signaling pathways may work together to elicit a persistent reduction in synaptic transmission.


Molecular and Cellular Neuroscience | 2011

Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function

Clare M. Gladding; Lynn A. Raymond

Research over the last few decades has shaped our understanding of the crucial involvement of the N-methyl-D-aspartate receptor (NMDAR) in mediating excitatory synaptic neurotransmission, neuronal development and learning and memory. The complexity of NMDAR modulation has escalated with the knowledge that receptors can traffic between synaptic and extrasynaptic sites, and that location on the plasma membrane profoundly affects the physiological function of NMDARs. Moreover, mechanisms that regulate NMDAR subcellular localization and function, such as protein-protein interactions, phosphorylation, palmitoylation, ubiquitination and receptor proteolytic cleavage, may differ for synaptic and extrasynaptic NMDARs. Recent studies suggest that NMDAR mislocalization is a dominant contributing factor to glutamatergic dysfunction and pathogenesis in neurological disorders such as Huntingtons disease, Alzheimers disease and ischemia. Therapeutic approaches that specifically rectify receptor mislocalization or target resulting downstream apoptotic signaling could be beneficial for preventing disease onset or progression across many disorders that are commonly caused by NMDAR dysfunction. This review will summarize the molecular mechanisms that regulate synaptic and extrasynaptic NMDAR localization in both physiologic and pathogenic states.


Neurobiology of Disease | 2012

P38 MAPK is involved in enhanced NMDA receptor-dependent excitotoxicity in YAC transgenic mouse model of Huntington disease.

Jing Fan; Clare M. Gladding; Liang Wang; Lily Y. J. Zhang; Alexandra M. Kaufman; Austen J. Milnerwood; Lynn A. Raymond

Huntington disease (HD) is a dominantly inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the protein huntingtin (htt). Previous studies have shown enhanced N-methyl-d-aspartate (NMDA)-induced excitotoxicity in neuronal models of HD, mediated in part by increased NMDA receptor (NMDAR) GluN2B subunit binding with the postsynaptic density protein-95 (PSD-95). In cultured hippocampal neurons, the NMDAR-activated p38 Mitogen-activated Protein Kinase (MAPK) death pathway is disrupted by a peptide (Tat-NR2B9c) that uncouples GluN2B from PSD-95, whereas NMDAR-mediated activation of c-Jun N-terminal Kinase (JNK) MAPK is PSD-95-independent. To investigate the mechanism by which Tat-NR2B9c protects striatal medium spiny neurons (MSNs) from mutant htt (mhtt)-enhanced NMDAR toxicity, we compared striatal tissue and cultured MSNs from presymptomatic yeast artificial chromosome (YAC) mice expressing htt with 128 polyQ (YAC128) to those from YAC18 and/or WT mice as controls. Similar to the previously published shift of GluN2B-containing NMDARs to extrasynaptic sites, we found increased PSD-95 localization as well as elevated PSD-95-GluN2B interactions in the striatal non-PSD (extrasynaptic) fraction from YAC128 mice. Notably, basal levels of both activated p38 and JNK MAPKs were elevated in the YAC128 striatum. NMDA stimulation of acute slices increased activation of p38 and JNK in WT and YAC128 striatum, but Tat-NR2B9c pretreatment reduced only the p38 activation in YAC128. In cultured MSNs, p38 MAPK inhibition reduced YAC128 NMDAR-mediated cell death to WT levels, and occluded the Tat-NR2B9c peptide protective effect; in contrast, inhibition of JNK had a similar protective effect in cultured MSNs from both WT and YAC128 mice. Our results suggest that altered activation of p38 MAPK contributes to mhtt enhancement of GluN2B/PSD-95 toxic signaling.


Human Molecular Genetics | 2012

Calpain and STriatal-Enriched protein tyrosine Phosphatase (STEP) activation contribute to extrasynaptic NMDA receptor localization in a Huntington's disease mouse model

Clare M. Gladding; Marja D. Sepers; Jian Xu; Lily Y. J. Zhang; Austen J. Milnerwood; Paul J. Lombroso; Lynn A. Raymond

In Huntingtons disease (HD), the mutant huntingtin (mhtt) protein is associated with striatal dysfunction and degeneration. Excitotoxicity and early synaptic defects are attributed, in part, to altered NMDA receptor (NMDAR) trafficking and function. Deleterious extrasynaptic NMDAR localization and signalling are increased early in yeast artificial chromosome mice expressing full-length mhtt with 128 polyglutamine repeats (YAC128 mice). NMDAR trafficking at the plasma membrane is regulated by dephosphorylation of the NMDAR subunit GluN2B tyrosine 1472 (Y1472) residue by STriatal-Enriched protein tyrosine Phosphatase (STEP). NMDAR function is also regulated by calpain cleavage of the GluN2B C-terminus. Activation of both STEP and calpain is calcium-dependent, and disruption of calcium homeostasis occurs early in the HD striatum. Here, we show increased calpain cleavage of GluN2B at both synaptic and extrasynaptic sites, and elevated extrasynaptic total GluN2B expression in the YAC128 striatum. Calpain inhibition significantly reduced extrasynaptic GluN2B expression in the YAC128 but not wild-type striatum. Furthermore, calpain inhibition reduced whole-cell NMDAR current and the surface/internal GluN2B ratio in co-cultured striatal neurons, without affecting synaptic GluN2B localization. Synaptic STEP activity was also significantly higher in the YAC128 striatum, correlating with decreased GluN2B Y1472 phosphorylation. A substrate-trapping STEP protein (TAT-STEP C-S) significantly increased VGLUT1-GluN2B colocalization, as well as increasing synaptic GluN2B expression and Y1472 phosphorylation. Moreover, combined calpain inhibition and STEP inactivation reduced extrasynaptic, while increasing synaptic GluN2B expression in the YAC128 striatum. These results indicate that increased STEP and calpain activation contribute to altered NMDAR localization in an HD mouse model, suggesting new therapeutic targets for HD.


Molecular and Cellular Neuroscience | 2009

Tyrosine dephosphorylation regulates AMPAR internalisation in mGluR-LTD

Clare M. Gladding; Valerie J. Collett; Zhengping Jia; Zafar I. Bashir; Graham L. Collingridge; Elek Molnár

Long-term depression (LTD) can be induced at hippocampal CA1 synapses by activation of either NMDA receptors (NMDARs) or group I metabotropic glutamate receptors (mGluRs), using their selective agonists NMDA and (RS)-3,5-dihydroxyphenylglycine (DHPG), respectively. Recent studies revealed that DHPG-LTD is dependent on activation of postsynaptic protein tyrosine phosphatases (PTPs), which transiently dephosphorylate tyrosine residues in AMPA receptors (AMPARs). Here we show that while both endogenous GluR2 and GluR3 AMPAR subunits are tyrosine phosphorylated at basal activity, only GluR2 is dephosphorylated in DHPG-LTD. The tyrosine dephosphorylation of GluR2 does not occur in NMDA-LTD. Conversely, while NMDA-LTD is associated with the dephosphorylation of GluR1-serine-845, DHPG-LTD does not alter the phosphorylation of this site. The increased AMPAR endocytosis in DHPG-LTD is PTP-dependent and involves tyrosine dephosphorylation of cell surface AMPARs. Together, these results indicate that the subunit selective tyrosine dephosphorylation of surface GluR2 regulates AMPAR internalisation in DHPG-LTD but not in NMDA-LTD in the hippocampus.


Neurobiology of Disease | 2012

Mitigation of augmented extrasynaptic NMDAR signaling and apoptosis in cortico-striatal co-cultures from Huntington's disease mice

Austen J. Milnerwood; Alexandra M. Kaufman; Marja D. Sepers; Clare M. Gladding; Lily Y. J. Zhang; Liang Wang; Jing Fan; Ainsley Coquinco; Joy Yi Qiao; Hwan Lee; Yu Tian Wang; Max S. Cynader; Lynn A. Raymond

We recently reported evidence for disturbed synaptic versus extrasynaptic NMDAR transmission in the early pathogenesis of Huntingtons disease (HD), a late-onset neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin. Studies in glutamatergic cells indicate that synaptic NMDAR transmission increases phosphorylated cyclic-AMP response element binding protein (pCREB) levels and drives neuroprotective gene transcription, whereas extrasynaptic NMDAR activation reduces pCREB and promotes cell death. By generating striatal and cortical neuronal co-cultures to investigate the glutamatergic innervation of striatal neurons, we demonstrate that dichotomous synaptic and extrasynaptic NMDAR signaling also occurs in GABAergic striatal medium-sized spiny neurons (MSNs), which are acutely vulnerable in HD. Further, we show that wild-type (WT) and HD transgenic YAC128 MSNs co-cultured with cortical cells have similar levels of glutamatergic synapses, synaptic NMDAR currents and synaptic GluN2B and GluN2A subunit-containing NMDARs. However, NMDAR whole-cell, and especially extrasynaptic, current is elevated in YAC128 MSNs. Moreover, GluN2B subunit-containing NMDAR surface expression is markedly increased, irrespective of whether or not the co-cultured cortical cells express mutant huntingtin. The data suggest that MSN cell-autonomous increases in extrasynaptic NMDARs are driven by the HD mutation. Consistent with these results, we find that extrasynaptic NMDAR-induced pCREB reductions and apoptosis are also augmented in YAC128 MSNs. Moreover, both NMDAR-mediated apoptosis and CREB-off signaling are blocked by co-application of either memantine or the GluN2B subunit-selective antagonist ifenprodil in YAC128 MSNs. GluN2A-subunit-selective concentrations of the antagonist NVP-AAM077 did not reduce cell death in either genotype. Cortico-striatal co-cultures provide an in vitro model system in which to better investigate striatal neuronal dysfunction in disease than mono-cultured striatal cells. Results from the use of this system, which partially recapitulates the cortico-striatal circuit and is amenable to acute genetic and pharmacological manipulations, suggest that pathophysiological NMDAR signaling is an intrinsic frailty in HD MSNs that can be successfully targeted by pharmacological interventions.

Collaboration


Dive into the Clare M. Gladding's collaboration.

Top Co-Authors

Avatar

Lynn A. Raymond

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Austen J. Milnerwood

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Alexandra M. Kaufman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Lily Y. J. Zhang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Jing Fan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Liang Wang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Marja D. Sepers

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge