Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clare M. Smith is active.

Publication


Featured researches published by Clare M. Smith.


Science | 2012

Platelet Factor 4 and Duffy Antigen Required for Platelet Killing of Plasmodium falciparum

Brendan J. McMorran; Laura Wieczorski; Karen E. Drysdale; Jo-Anne Chan; Hong Ming Huang; Clare M. Smith; Chalachew Mitiku; James G. Beeson; Gaetan Burgio; Simon J. Foote

Platelets Poison Parasites Activated platelets bound to malaria parasite–infected red blood cells were once thought to contribute to pathogenesis, but recently the platelets have been found to have a protective effect. McMorran et al. (p. 1348; see the Perspective by Engwerda and Good) extended this discovery to show that platelet activation releases intracellular granules containing a chemokine, PF4, which is internalized by Plasmodium falciparum–infected red cells. Subsequently, mature parasites within the cells die. The Duffy blood-group factor on red blood cells is known to act as a nonspecific receptor for chemokines, such as PF4, as well as a receptor for cell invasion by other species of malaria parasite. When the Duffy antigen was blocked by antibody treatment, platelets and PF4 were less able to kill the P. falciparum parasites within. Interaction of a platelet protein and a red cell protein enables platelets to attack malarial parasites inside red cells. Platelets restrict the growth of intraerythrocytic malaria parasites by binding to parasitized cells and killing the parasite within. Here, we show that the platelet molecule platelet factor 4 (PF4 or CXCL4) and the erythrocyte Duffy-antigen receptor (Fy) are necessary for platelet-mediated killing of Plasmodium falciparum parasites. PF4 is released by platelets on contact with parasitized red cells, and the protein directly kills intraerythrocytic parasites. This function for PF4 is critically dependent on Fy, which binds PF4. Genetic disruption of Fy expression inhibits binding of PF4 to parasitized cells and concomitantly prevents parasite killing by both human platelets and recombinant human PF4. The protective function afforded by platelets during a malarial infection may therefore be compromised in Duffy-negative individuals, who do not express Fy.


Mammalian Genome | 2011

Host resistance to malaria: using mouse models to explore the host response

Rhea Longley; Clare M. Smith; Anny Fortin; Joanne Berghout; Brendan J. McMorran; Gaetan Burgio; Simon J. Foote; Philippe Gros

Malaria is a disease that infects over 500 million people, causing at least 1 million deaths every year, with the majority occurring in developing countries. The current antimalarial arsenal is becoming dulled due to the rapid rate of resistance of the parasite. However, in populations living in malaria-endemic regions there are many examples of genetic-based resistance to the severe effects of the parasite Plasmodium. Defining the genetic factors behind host resistance has been an area of great scientific interest over the last few decades; this review summarizes the current knowledge of the genetic loci involved. Perhaps the lessons learned from the natural variation in both the human populations and experimental mouse models of infection may pave the way for novel resistance-proof antimalarials.


Mbio | 2016

Tuberculosis Susceptibility and Vaccine Protection Are Independently Controlled by Host Genotype

Clare M. Smith; Megan K. Proulx; Andrew J. Olive; Dominick Laddy; Bibhuti B. Mishra; Caitlin Moss; Nuria Martinez Gutierrez; Michelle M. Bellerose; Palmira Barreira-Silva; Jia Yao Phuah; Richard E. Baker; Samuel M. Behar; Hardy Kornfeld; Thomas G. Evans; Gillian Beamer; Christopher M. Sassetti

ABSTRACT The outcome of Mycobacterium tuberculosis infection and the immunological response to the bacillus Calmette-Guerin (BCG) vaccine are highly variable in humans. Deciphering the relative importance of host genetics, environment, and vaccine preparation for the efficacy of BCG has proven difficult in natural populations. We developed a model system that captures the breadth of immunological responses observed in outbred individual mice, which can be used to understand the contribution of host genetics to vaccine efficacy. This system employs a panel of highly diverse inbred mouse strains, consisting of the founders and recombinant progeny of the “Collaborative Cross” project. Unlike natural populations, the structure of this panel allows the serial evaluation of genetically identical individuals and the quantification of genotype-specific effects of interventions such as vaccination. When analyzed in the aggregate, our panel resembled natural populations in several important respects: the animals displayed a broad range of susceptibility to M. tuberculosis, differed in their immunological responses to infection, and were not durably protected by BCG vaccination. However, when analyzed at the genotype level, we found that these phenotypic differences were heritable. M. tuberculosis susceptibility varied between lines, from extreme sensitivity to progressive M. tuberculosis clearance. Similarly, only a minority of the genotypes was protected by vaccination. The efficacy of BCG was genetically separable from susceptibility to M. tuberculosis, and the lack of efficacy in the aggregate analysis was driven by nonresponsive lines that mounted a qualitatively distinct response to infection. These observations support an important role for host genetic diversity in determining BCG efficacy and provide a new resource to rationally develop more broadly efficacious vaccines. IMPORTANCE Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB vaccine, M. bovis BCG, is highly variable. The design of more broadly efficacious vaccines depends on understanding the factors that limit the protection imparted by BCG. While these complex factors are difficult to disentangle in natural populations, we used a model population of mice to understand the role of host genetic composition in BCG efficacy. We found that the ability of BCG to protect mice with different genotypes was remarkably variable. The efficacy of BCG did not depend on the intrinsic susceptibility of the animal but, instead, correlated with qualitative differences in the immune responses to the pathogen. These studies suggest that host genetic polymorphism is a critical determinant of vaccine efficacy and provide a model system to develop interventions that will be useful in genetically diverse populations. Tuberculosis (TB) remains an urgent global health crisis, and the efficacy of the currently used TB vaccine, M. bovis BCG, is highly variable. The design of more broadly efficacious vaccines depends on understanding the factors that limit the protection imparted by BCG. While these complex factors are difficult to disentangle in natural populations, we used a model population of mice to understand the role of host genetic composition in BCG efficacy. We found that the ability of BCG to protect mice with different genotypes was remarkably variable. The efficacy of BCG did not depend on the intrinsic susceptibility of the animal but, instead, correlated with qualitative differences in the immune responses to the pathogen. These studies suggest that host genetic polymorphism is a critical determinant of vaccine efficacy and provide a model system to develop interventions that will be useful in genetically diverse populations.


Nature microbiology | 2017

Nitric oxide prevents a pathogen-permissive granulocytic inflammation during tuberculosis

Bibhuti B. Mishra; Rustin R. Lovewell; Andrew J. Olive; Guoliang Zhang; Wenfei Wang; Eliseo A. Eugenin; Clare M. Smith; Jia Yao Phuah; Jarukit E. Long; Michelle L. Dubuke; Samantha G. Palace; Jon D. Goguen; Richard E. Baker; Subhalaxmi Nambi; Rabinarayan Mishra; Matthew G. Booty; Christina E. Baer; Scott A. Shaffer; Véronique Dartois; Beth A. McCormick; Xinchun Chen; Christopher M. Sassetti

Nitric oxide contributes to protection from tuberculosis. It is generally assumed that this protection is due to direct inhibition of Mycobacterium tuberculosis growth, which prevents subsequent pathological inflammation. In contrast, we report that nitric oxide primarily protects mice by repressing an interleukin-1- and 12/15-lipoxygenase-dependent neutrophil recruitment cascade that promotes bacterial replication. Using M. tuberculosis mutants as indicators of the pathogens environment, we inferred that granulocytic inflammation generates a nutrient-replete niche that supports M. tuberculosis growth. Parallel clinical studies indicate that a similar inflammatory pathway promotes tuberculosis in patients. The human 12/15-lipoxygenase orthologue, ALOX12, is expressed in cavitary tuberculosis lesions; the abundance of its products correlates with the number of airway neutrophils and bacterial burden and a genetic polymorphism that increases ALOX12 expression is associated with tuberculosis risk. These data suggest that M. tuberculosis exploits neutrophilic inflammation to preferentially replicate at sites of tissue damage that promote contagion.


Blood | 2015

Red cells from ferrochelatase-deficient erythropoietic protoporphyria patients are resistant to growth of malarial parasites

Clare M. Smith; Ante Jerkovic; Hervé Puy; Ingrid Winship; Jean-Charles Deybach; Laurent Gouya; Giel G. van Dooren; Christopher D. Goodman; Angelika Sturm; Hana Manceau; Geoffrey I. McFadden; Peter H. David; Odile Mercereau-Puijalon; Gaetan Burgio; Brendan J. McMorran; Simon J. Foote

Many red cell polymorphisms are a result of selective pressure by the malarial parasite. Here, we add another red cell disease to the panoply of erythrocytic changes that give rise to resistance to malaria. Erythrocytes from individuals with erythropoietic protoporphyria (EPP) have low levels of the final enzyme in the heme biosynthetic pathway, ferrochelatase. Cells from these patients are resistant to the growth of Plasmodium falciparum malarial parasites. This phenomenon is due to the absence of ferrochelatase and not an accumulation of substrate, as demonstrated by the normal growth of P falciparum parasites in the EPP phenocopy, X-linked dominant protoporphyria, which has elevated substrate, and normal ferrochelatase levels. This observation was replicated in a mouse strain with a hypomorphic mutation in the murine ferrochelatase gene. The parasite enzyme is not essential for parasite growth as Plasmodium berghei parasites carrying a complete deletion of the ferrochelatase gene grow normally in erythrocytes, which confirms previous studies. That ferrochelatase is essential to parasite growth was confirmed by showing that inhibition of ferrochelatase using the specific competitive inhibitor, N-methylprotoporphyrin, produced a potent growth inhibition effect against cultures of P falciparum. This raises the possibility of targeting human ferrochelatase in a host-directed antimalarial strategy.


PLOS ONE | 2014

Treatment of Erythrocytes with the 2-Cys Peroxiredoxin Inhibitor, Conoidin A, Prevents the Growth of Plasmodium falciparum and Enhances Parasite Sensitivity to Chloroquine

Mariana Brizuela; Hong Ming Huang; Clare M. Smith; Gaetan Burgio; Simon J. Foote; Brendan J. McMorran

The human erythrocyte contains an abundance of the thiol-dependant peroxidase Peroxiredoxin-2 (Prx2), which protects the cell from the pro-oxidant environment it encounters during its 120 days of life in the blood stream. In malarial infections, the Plasmodium parasite invades red cells and imports Prx2 during intraerythrocytic development, presumably to supplement in its own degradation of peroxides generated during cell metabolism, especially hemoglobin (Hb) digestion. Here we demonstrate that an irreversible Prx2 inhibitor, Conoidin A (2,3-bis(bromomethyl)-1,4-dioxide-quinoxaline; BBMQ), has potent cytocidal activity against cultured P. falciparum. Parasite growth was also inhibited in red cells that were treated with BBMQ and then washed prior to parasite infection. These cells remained susceptible to merozoite invasion, but failed to support normal intraerythrocytic development. In addition the potency of chloroquine (CQ), an antimalarial drug that prevents the detoxification of Hb-derived heme, was significantly enhanced in the presence of BBMQ. CQ IC50 values decreased an order of magnitude when parasites were either co-incubated with BBMQ, or introduced into BBMQ-pretreated cells; these effects were equivalent for both drug-resistant and drug-sensitive parasite lines. Together these results indicate that treatment of red cells with BBMQ renders them incapable of supporting parasite growth and increases parasite sensitivity to CQ. We also propose that molecules such as BBMQ that target host cell proteins may constitute a novel host-directed therapeutic approach for treating malaria.


Scientific Reports | 2017

Griseofulvin impairs intraerythrocytic growth of Plasmodium falciparum through ferrochelatase inhibition but lacks activity in an experimental human infection study

Clare M. Smith; Ante Jerkovic; Thy T. Truong; Simon J. Foote; James S. McCarthy; Brendan J. McMorran

Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 μM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase.


Nucleic Acids Research | 2017

Statistical analysis of genetic interactions in Tn-Seq data

Michael A. DeJesus; Subhalaxmi Nambi; Clare M. Smith; Richard E. Baker; Christopher M. Sassetti; Thomas R. Ioerger

Abstract Tn-Seq is an experimental method for probing the functions of genes through construction of complex random transposon insertion libraries and quantification of each mutants abundance using next-generation sequencing. An important emerging application of Tn-Seq is for identifying genetic interactions, which involves comparing Tn mutant libraries generated in different genetic backgrounds (e.g. wild-type strain versus knockout strain). Several analytical methods have been proposed for analyzing Tn-Seq data to identify genetic interactions, including estimating relative fitness ratios and fitting a generalized linear model. However, these have limitations which necessitate an improved approach. We present a hierarchical Bayesian method for identifying genetic interactions through quantifying the statistical significance of changes in enrichment. The analysis involves a four-way comparison of insertion counts across datasets to identify transposon mutants that differentially affect bacterial fitness depending on genetic background. Our approach was applied to Tn-Seq libraries made in isogenic strains of Mycobacterium tuberculosis lacking three different genes of unknown function previously shown to be necessary for optimal fitness during infection. By analyzing the libraries subjected to selection in mice, we were able to distinguish several distinct classes of genetic interactions for each target gene that shed light on their functions and roles during infection.


Journal of Immunology | 2018

The Phagocyte Oxidase Controls Tolerance to Mycobacterium tuberculosis Infection

Andrew J. Olive; Clare M. Smith; Michael C. Kiritsy; Christopher M. Sassetti

Protection from infectious disease relies on two distinct strategies: antimicrobial resistance directly inhibits pathogen growth, whereas infection tolerance protects from the negative impact of infection on host health. A single immune mediator can differentially contribute to these strategies in distinct contexts, confounding our understanding of protection to different pathogens. For example, the NADPH-dependent phagocyte oxidase (Phox) complex produces antimicrobial superoxide and protects from tuberculosis (TB) in humans. However, Phox-deficient mice display no sustained resistance defects to Mycobacterium tuberculosis, suggesting a more complicated role for NADPH Phox complex than strictly controlling bacterial growth. We examined the mechanisms by which Phox contributes to protection from TB and found that mice lacking the Cybb subunit of Phox suffered from a specific defect in tolerance, which was caused by unregulated Caspase-1 activation, IL-1β production, and neutrophil influx into the lung. These studies imply that a defect in tolerance alone is sufficient to compromise immunity to M. tuberculosis and highlight a central role for Phox and Caspase-1 in regulating TB disease progression.


Trends in Microbiology | 2018

Modeling Diversity: Do Homogeneous Laboratory Strains Limit Discovery?

Clare M. Smith; Christopher M. Sassetti

Collaboration


Dive into the Clare M. Smith's collaboration.

Top Co-Authors

Avatar

Brendan J. McMorran

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christopher M. Sassetti

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew J. Olive

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Richard E. Baker

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bibhuti B. Mishra

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Jia Yao Phuah

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar

Subhalaxmi Nambi

University of Massachusetts Medical School

View shared research outputs
Researchain Logo
Decentralizing Knowledge