Clare Narrod
University of Maryland, College Park
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clare Narrod.
Ecohealth | 2012
Clare Narrod; Jakob Zinsstag; Marites M. Tiongco
This article presents an integrated epidemiological and economic framework for assessing zoonoses using a “one health” concept. The framework allows for an understanding of the cross-sector economic impact of zoonoses using modified risk analysis and detailing a range of analytical tools. The goal of the framework is to link the analysis outputs of animal and human disease transmission models, economic impact models and evaluation of risk management options to gain improved understanding of factors affecting the adoption of risk management strategies so that investment planning includes the most promising interventions (or sets of interventions) in an integrated fashion. A more complete understanding of the costs of the disease and the costs and benefits of control measures would promote broader implementation of the most efficient and effective control measures, contributing to improved animal and human health, better livelihood outcomes for the poor and macroeconomic growth.
International Journal of Food Microbiology | 2016
Elisabetta Lambertini; Robert L. Buchanan; Clare Narrod; Randall M. Ford; R. C. Baker; Abani K. Pradhan
Recent Salmonella outbreaks associated with dry pet foods and treats highlight the importance of these foods as previously overlooked exposure vehicles for both pets and humans. In the last decade efforts have been made to raise the safety of this class of products, for instance by upgrading production equipment, cleaning protocols, and finished product testing. However, no comprehensive or quantitative risk profile is available for pet foods, thus limiting the ability to establish safety standards and assess the effectiveness of current and proposed Salmonella control measures. This study sought to develop an ingredients-to-consumer quantitative microbial exposure assessment model to: 1) estimate pet and human exposure to Salmonella via dry pet food, and 2) assess the impact of industry and household-level mitigation strategies on exposure. Data on prevalence and concentration of Salmonella in pet food ingredients, production process parameters, bacterial ecology, and contact transfer in the household were obtained through literature review, industry data, and targeted research. A probabilistic Monte Carlo modeling framework was developed to simulate the production process and basic household exposure routes. Under the range of assumptions adopted in this model, human exposure due to handling pet food is null to minimal if contamination occurs exclusively before extrusion. Exposure increases considerably if recontamination occurs post-extrusion during coating with fat, although mean ingested doses remain modest even at high fat contamination levels, due to the low percent of fat in the finished product. Exposure is highly variable, with the distribution of doses ingested by adult pet owners spanning 3Log CFU per exposure event. Child exposure due to ingestion of 1g of pet food leads to significantly higher doses than adult doses associated with handling the food. Recontamination after extrusion and coating, e.g., via dust or equipment surfaces, may also lead to exposure due to the absence of pathogen reduction steps after extrusion or at consumer households. Exposure is potentially highest when Salmonella is transferred to human food that is left at growth-promoting conditions. This model can be applied to evaluate the impact of alternative Salmonella control measures during production, risk communication to consumers, and regulatory standards.
Critical Reviews in Food Science and Nutrition | 2016
Elisabetta Lambertini; Robert L. Buchanan; Clare Narrod; Abani K. Pradhan
Recent Salmonella outbreaks associated with dry pet food and treats raised the level of concern for these products as vehicle of pathogen exposure for both pets and their owners. The need to characterize the microbiological and risk profiles of this class of products is currently not supported by sufficient specific data. This systematic review summarizes existing data on the main variables needed to support an ingredients-to-consumer quantitative risk model to (1) describe the microbial ecology of bacterial pathogens in the dry pet food production chain, (2) estimate pet exposure to pathogens through dry food consumption, and (3) assess human exposure and illness incidence due to contact with pet food and pets in the household. Risk models populated with the data here summarized will provide a tool to quantitatively address the emerging public health concerns associated with pet food and the effectiveness of mitigation measures. Results of such models can provide a basis for improvements in production processes, risk communication to consumers, and regulatory action.
Food Control | 2019
George Mahuku; Henry Sila Nzioki; Charity Mutegi; Fred Kanampiu; Clare Narrod; Dan Makumbi
Maize, the main dietary staple in Kenya, is one of the crops most susceptible to contamination by aflatoxin. To understand sources of aflatoxin contamination for home grown maize, we collected 789 maize samples from smallholder farmers’ fields in Eastern and South Western, two regions in Kenya representing high and low aflatoxin risk areas, respectively, and determined aflatoxin B1 (AFB1) using ELISA with specific polyclonal antibodies. AFB1 was detected in 274 of the 416 samples from Eastern Kenya at levels between 0.01 and 9091.8 μg kg−1 (mean 67.8 μg kg−1). In South Western, AFB1 was detected in 233 of the 373 samples at levels between 0.98 and 722.2 μg kg−1 (mean 22.3 μg kg−1). Of the samples containing AFB1, 153 (55.8%) from Eastern and 102 (43.8%) from South Western exceeded the maximum allowable limit of AFB1 (5 μg kg−1) in maize for human consumption in Kenya. The probable daily intake (PDI) of AFB1 in Eastern Kenya ranged from 0.07 to 60612 ng kg−1 bw day−1 (mean 451.8 ng kg−1 bw day−1), while for South Western, PDI ranged from 6.53 to 4814.7 ng kg−1 bw day−1 (mean 148.4 ng kg−1 bw day−1). The average PDI for both regions exceeded the estimated provisional maximum tolerable daily intake of AFB1, which is a health concern for the population in these regions. These results revealed significant levels of preharvest aflatoxin contamination of maize in both regions. Prevention of preharvest infection of maize by toxigenic A. flavus strains should be a critical focal point to prevent aflatoxin contamination and exposure.
Archive | 2008
Pratap S. Birthal; Awadhesh K. Jha; Marites M. Tiongco; Clare Narrod
Archive | 2008
Maria Angeles Catelo; Clare Narrod; Marites M. Tiongco
International trade in livestock products: proceedings of a symposium of the International Agricultural Trade Research Consortium, Auckland, New Zealand, 18-19 January, 2001. | 2001
Clare Narrod; Carl E. Pray; Marites M. Tiongco
Agricultural Economics | 2016
Hugo De Groote; Clare Narrod; Simon Chege Kimenju; Rosemarie Scott; Marites Tiongco; Zachary M. Gitonga
IWMI Books, Reports | 2010
Marites M. Tiongco; Clare Narrod; Kelly Bidwell
Leveraging Agriculture for Improving Nutrition and Health. Proceedings of the IFPRI International Conference, New Delhi, India, 10-12 February 2011. | 2011
Pippa Chenevix Trench; Clare Narrod; Devesh Roy; Marites M. Tiongco
Collaboration
Dive into the Clare Narrod's collaboration.
International Crops Research Institute for the Semi-Arid Tropics
View shared research outputs