Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clarissa S. Sit is active.

Publication


Featured researches published by Clarissa S. Sit.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Thuricin CD, a posttranslationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile

Mary C. Rea; Clarissa S. Sit; Evelyn M Clayton; Paula M. O'Connor; Randy M. Whittal; Jing Zheng; John C. Vederas; R. Paul Ross; Colin Hill

The last decade has seen numerous outbreaks of Clostridium difficile-associated disease (CDAD), which presented significant challenges for healthcare facilities worldwide. We have identified and purified thuricin CD, a two-component antimicrobial that shows activity against C. difficile in the nanomolar range. Thuricin CD is produced by Bacillus thuringiensis DPC 6431, a bacterial strain isolated from a human fecal sample, and it consists of two distinct peptides, Trn-α and Trn-β, that act synergistically to kill a wide range of clinical C. difficile isolates, including ribotypes commonly associated with CDAD (e.g., ribotype 027). However, this bacteriocin thuricin CD has little impact on most other genera, including many gastrointestinal commensals. Complete amino acid sequencing using infusion tandem mass spectrometry indicated that each peptide is posttranslationally modified at its respective 21st, 25th, and 28th residues. Solution NMR studies on [13C,15N] Trn-α and [13C,15N]Trn-β were used to characterize these modifications. Analysis of multidimensional NOESY data shows that specific cysteines are linked to the α-carbons of the modified residues, forming three sulfur to α-carbon bridges. Complete sequencing of the thuricin CD gene cluster revealed genes capable of encoding two S′-adenosylmethionine proteins that are characteristically associated with unusual posttranslational modifications. Thuricin CD is a two-component antimicrobial peptide system with sulfur to α-carbon linkages, and it may have potential as a targeted therapy in the treatment of CDAD while also reducing collateral impact on the commensal flora.


Fems Microbiology Letters | 2011

The activity of bacteriocins from Carnobacterium maltaromaticum UAL307 against Gram-negative bacteria in combination with EDTA treatment

Leah A. Martin-Visscher; Sabesan Yoganathan; Clarissa S. Sit; Christopher T. Lohans; John C. Vederas

Bacteriocins from gram-positive bacteria are potent antimicrobial peptides that inhibit pathogenic and food-spoilage bacteria. They are usually ineffective against gram-negative bacteria because they cannot penetrate the outer membrane (OM). Disruption of the OM of some gram-negative bacteria was reported to sensitize them to certain bacteriocins. This study evaluates the activity of three purified bacteriocins [carnocyclin A (CclA), carnobacteriocin BM1 (CbnBM1) and piscicolin 126 (PisA)] produced by Carnobacterium maltaromaticum UAL307, which has been approved for preservation of food in United States and Canada, against three gram-negative bacteria (Escherichia coli DH5α, Pseudomonas aeruginosa ATCC 14207 and Salmonella Typhimurium ATCC 23564). Their efficacy is compared with bacteriocins of other classes: the lantibiotics nisin A (positive control) and gallidermin, and the cyclic peptide subtilosin A (SubA). In combination with EDTA, CclA inhibited both E. coli and Pseudomonas. PisA inhibited Pseudomonas, but CbnBM1 showed weak activity toward Pseudomonas. In comparison, nisin and gallidermin inhibited the growth of all three strains, whereas SubA was active against E. coli and Pseudomonas only at high concentrations. The results reveal that UAL307 bacteriocins can inhibit gram-negative bacteria if the OM is weakened, and that the different classes of bacteriocins in this study exert unique modes of action toward such bacteria.


Biochemistry and Cell Biology | 2008

Approaches to the discovery of new antibacterial agents based on bacteriocins.

Clarissa S. Sit; John C. Vederas

The development of antibiotic resistance in pathogenic bacteria has led to a search for novel classes of antimicrobial drugs. Bacteriocins are peptides that are naturally produced by bacteria and have considerable potential to fulfill the need for more effective bacteriocidal agents. In this mini-review, we describe research aimed at generating analogues of bacteriocins from lactic acid bacteria, with the goal of gaining a better understanding of structure-activity relationships in these peptides. In particular, we report recent findings on synthetic analogues of leucocin A, pediocin PA1, and lacticin 3147 A2, as well as on the significance of these results for the design and production of new antibiotics.


Journal of Bacteriology | 2009

Isolation of a Variant of Subtilosin A with Hemolytic Activity

Tai Huang; Hao Geng; Venugopal R. Miyyapuram; Clarissa S. Sit; John C. Vederas; Michiko M. Nakano

Bacillus subtilis produces an anionic bacteriocin called subtilosin A that possesses antibacterial activity against certain gram-positive bacteria. In this study, we uncovered a hemolytic mutant of B. subtilis that produces an altered form of subtilosin A. The mutant bacteriocin, named subtilosin A1, has a replacement of threonine at position 6 with isoleucine. In addition to the hemolytic activity, subtilosin A1 was found to exhibit enhanced antimicrobial activity against specific bacterial strains. The B. subtilis albB mutant that does not produce a putative immunity peptide was more sensitive to both subtilosin A and subtilosin A1. A spontaneous suppressor mutation of albB that restored resistance to subtilosin A and subtilosin A1 was obtained. The sbr (subtilosin resistance) mutation conferring the resistance is not linked to the sboA-alb locus. The sbr mutation does not increase the resistance of B. subtilis to other cell envelope-targeted antimicrobial agents, indicating that the mutation specifically confers the resistance to subtilosins. The findings suggest possible bioengineering approaches for obtaining anionic bacteriocins with enhanced and/or altered bactericidal activity. Furthermore, future identification of the subtilosin-resistant mutation could provide insights into the mechanism of subtilosin A activity.


Journal of the American Chemical Society | 2011

The 3D Structure of Thuricin CD, a Two-Component Bacteriocin with Cysteine Sulfur to α-Carbon Cross-links

Clarissa S. Sit; Ryan T. McKay; C Hill; R.P Ross; John C. Vederas

Thuricin CD is an antimicrobial factor that consists of two peptides, Trn-α and Trn-β, that exhibit synergistic activity against drug resistant strains of Clostridium difficile. Trn-α and Trn-β each possess three sulfur to α-carbon thioether bridges for which the stereochemistry is unknown. This report presents the three-dimensional solution structures of Trn-α and Trn-β. Structure calculations were performed for the eight possible stereoisomers of each peptide based on the same NMR data. The structure of the stereoisomer that best fit the experimental data was chosen as the representative structure for each peptide. It was determined that Trn-α has L-stereochemistry at Ser21 (α-R), L-stereochemistry at Thr25 (α-R), and D-stereochemistry at Thr28 (α-S) (an LLD isomer). Trn-β was also found to be the LLD isomer, with L-stereochemistry at Thr21 (α-R), L-stereochemistry at Ala25 (α-R), and D-stereochemistry at Tyr28 (α-S).


Accounts of Chemical Research | 2011

Biosynthesis of Aminovinyl-Cysteine-Containing Peptides and Its Application in the Production of Potential Drug Candidates

Clarissa S. Sit; Sabesan Yoganathan; John C. Vederas

Bacteria produce a wide array of metabolites to protect themselves from competing microbes. These antimicrobial compounds include peptides with an S-[(Z)-2-aminovinyl]-d-cysteine (AviCys) or S-[(Z)-2-aminovinyl]-(3S)-3-methyl-d-cysteine (AviMeCys) residue, which have been isolated from several different bacterial species. The peptides are structurally diverse: some feature polycyclic backbones, such as the lantibiotic epidermin, and others feature a mostly linear structure, such as cypemycin. Each of the AviCys-containing peptides characterized to date exhibit highly potent biological activities, ranging from antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) to anticancer activity against mouse leukemia cells. The AviCys-containing peptides gallidermin and mutacin 1140 have been suggested as possible treatments of acne and of throat infections, respectively. Unfortunately, their low production yield in fermentation (typically only 10-200 mg/L) remains a major hindrance to the widespread use and clinical testing of AviCys-containing peptides for human therapeutics. Although scientists have made great strides in the total chemical synthesis of polycyclic peptides on solid support, an efficient method to form the AviCys ring has yet to be developed. In light of these difficulties, it may be possible to draw inspiration from the natural biosynthesis of AviCys-containing peptides within the producer organisms. In this Account, we examine the characteristics of the enzymes responsible for constructing AviCys to evaluate possibilities for generating high yields of bioactive AviCys- or AviMeCys-containing peptides for research and clinical use. The gene cluster for the biosynthesis of epidermin has been studied in depth, leading to the proposal for a mechanism of AviCys formation. First, a serine residue upstream of the C-terminus is enzymatically dehydrated to form a dehydroalanine residue. Then, the C-terminal cysteine residue is oxidatively decarboxylated to form an enethiolate, which subsequently cyclizes onto the dehydroalanine to give the AviCys ring. Extensive research on EpiD, the enzyme responsible for the oxidative decarboxylation reaction, has led to its purification and cocrystallization with a model substrate peptide, yielding an X-ray crystal structure. An in vitro assay of the enzyme with a library of synthetic heptapeptides has resulted in the discovery that EpiD has low absolute substrate specificity and can oxidatively decarboxylate a wide variety of C-terminal cysteine-containing peptides. Recently, the gene cluster for the biosynthesis of cypemycin was also identified. Despite certain structural similarities between cypemycin and the lantibiotic peptides, analysis of the biosynthetic genes suggests that cypemycin production is quite different from that of the lantibiotics. In particular, the AviCys residue in cypemycin is formed from two cysteine residues instead of one serine and one cysteine, and the CypD enzyme that catalyzes the oxidative decarboxylation of the C-terminal cysteine shows little homology to EpiD. The knowledge accrued from studying EpiD and CypD could be used to develop a semisynthetic methodology to produce AviCys-containing peptides. In particular, suitable precursor peptides could be synthesized on solid support before being fed to either of these enzymes in vitro to generate the C-terminal AviCys moiety. Exploring the potential of this methodology could lead to the efficient production of epidermin, cypemycin, and analogues thereof.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants

Clarissa S. Sit; Antonio C. Ruzzini; Ethan B. Van Arnam; Timothy R. Ramadhar; Cameron R. Currie; Jon Clardy

Significance Bacterially produced natural products comprise a group of molecules with highly diverse and generally complex structures that possess a remarkable array of biological activities. These molecules are separated into families sharing a common structural core and, accordingly, conserved sets of genes encoding the biosynthetic enzymes required to generate these shared structural features. Genomic characterization of related bacteria that produce remarkably similar molecules led to the surprising discovery that gene context was not conserved for the respective biosynthetic pathways. A comparison of these variable arrangements documents one way in which closely related symbiotic bacteria acquire the capacity to produce new molecules with new functions. Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A–C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A–C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented.


ChemBioChem | 2014

Biochemical, structural, and genetic characterization of tridecaptin A₁, an antagonist of Campylobacter jejuni.

Christopher T. Lohans; Marco J. van Belkum; Stephen A. Cochrane; Zedu Huang; Clarissa S. Sit; Lynn M. McMullen; John C. Vederas

Bacillus circulans NRRL B‐30644 (now Paenibacillus terrae) was previously reported to produce SRCAM 1580, a bacteriocin active against the food pathogen Campylobacter jejuni. We have been unable to isolate SRCAM 1580, and did not find any genetic determinants in the genome of this strain. We now report the reassignment of this activity to the lipopeptide tridecaptin A1. Structural characterization of tridecaptin A1 was achieved through NMR, MS/MS and GC‐MS studies. The structure was confirmed through the first chemical synthesis of tridecaptin A1, which also revealed the stereochemistry of the lipid chain. The impact of this stereochemistry on antimicrobial activity was examined. The biosynthetic machinery responsible for tridecaptin production was identified through bioinformatic analyses. P. terrae NRRL B‐30644 also produces paenicidin B, a novel lantibiotic active against Gram‐positive bacteria. MS/MS analyses indicate that this lantibiotic is structurally similar to paenicidin A.


Journal of the American Chemical Society | 2012

Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy.

Christopher T. Lohans; Zedu Huang; Marco J. van Belkum; Maude Giroud; Clarissa S. Sit; Erika M. Steels; Jing Zheng; Randy M. Whittal; Lynn M. McMullen; John C. Vederas

Lantibiotics are ribosomally synthesized antimicrobial peptides produced by bacteria that are increasingly of interest for food preservation and possible therapeutic uses. These peptides are extensively post-translationally modified, and are characterized by lanthionine and methyllanthionine thioether cross-links. Paenibacillus polymyxa NRRL B-30509 was found to produce polymyxins and tridecaptins, in addition to a novel lantibiotic termed paenicidin A. A bacteriocin termed SRCAM 602 previously reported to be produced by this organism and claimed to be responsible for inhibition of Campylobacter jejuni could not be detected either directly or by genomic analysis. The connectivities of the thioether cross-links of paenicidin A were solved using a novel partial desulfurization/reduction strategy in combination with tandem mass spectrometry. This approach overcame the limitations of NMR-based structural characterization that proved mostly unsuccessful for this peptide. Paenicidin A is a highly cyclized lantibiotic, containing six lanthionine and methyllanthionine rings, three of which are interlocking.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Selvamicin, an atypical antifungal polyene from two alternative genomic contexts

Ethan B. Van Arnam; Antonio C. Ruzzini; Clarissa S. Sit; Heidi A. Horn; Adrián A. Pinto-Tomás; Cameron R. Currie; Jon Clardy

Significance Bacteria use small molecules to mediate their relationships with nearby microbes, and these molecules represent both a promising source of therapeutic agents and a model system for the evolution and dissemination of molecular diversity. This study deals with one such molecule, selvamicin, which is produced by ant-associated bacteria. These bacteria protect the ants’ nests against fungal pathogens. Selvamicin is an atypical member of a clinically important class of antifungal agents, and it appears to have both better therapeutic properties and a different mechanism of action. Further, the genes for producing it are found on the bacteria’s chromosome in one ant nest but on a plasmid in another, illustrating the likely path by which it has spread. The bacteria harbored by fungus-growing ants produce a variety of small molecules that help maintain a complex multilateral symbiosis. In a survey of antifungal compounds from these bacteria, we discovered selvamicin, an unusual antifungal polyene macrolide, in bacterial isolates from two neighboring ant nests. Selvamicin resembles the clinically important antifungals nystatin A1 and amphotericin B, but it has several distinctive structural features: a noncationic 6-deoxymannose sugar at the canonical glycosylation site and a second sugar, an unusual 4-O-methyldigitoxose, at the opposite end of selvamicin’s shortened polyene macrolide. It also lacks some of the pharmacokinetic liabilities of the clinical agents and appears to have a different target. Whole genome sequencing revealed the putative type I polyketide gene cluster responsible for selvamicin’s biosynthesis including a subcluster of genes consistent with selvamicin’s 4-O-methyldigitoxose sugar. Although the selvamicin biosynthetic cluster is virtually identical in both bacterial producers, in one it is on the chromosome, in the other it is on a plasmid. These alternative genomic contexts illustrate the biosynthetic gene cluster mobility that underlies the diversity and distribution of chemical defenses by the specialized bacteria in this multilateral symbiosis.

Collaboration


Dive into the Clarissa S. Sit's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cameron R. Currie

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge