Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clarissa von Haefen is active.

Publication


Featured researches published by Clarissa von Haefen.


Oncogene | 2003

Paclitaxel-induced apoptosis in BJAB cells proceeds via a death receptor-independent, caspases-3/-8-driven mitochondrial amplification loop

Clarissa von Haefen; Thomas Wieder; Frank Essmann; Klaus Schulze-Osthoff; Bernd Dörken; Peter T. Daniel

Caspase-8 is a key effector of death-receptor-triggered apoptosis. In a previous study, we demonstrated, however, that caspase-8 can also be activated in a death receptor-independent manner via the mitochondrial apoptosis pathway, downstream of caspase-3. Here, we show that caspases-3 and -8 mediate a mitochondrial amplification loop that is required for the optimal release of cytochrome c, mitochondrial permeability shift transition, and cell death during apoptosis induced by treatment with the microtubule-damaging agent paclitaxel (Taxol). In contrast, Smac release from mitochondria followed a different pattern, and therefore seems to be regulated independently from cytochrome c release. Taxol-induced cell death was inhibited by the use of synthetic, cell-permeable caspase-3- (zDEVD-fmk) or caspase-8-specific (zIETD-fmk) inhibitors. Apoptosis signaling was not affected by a dominant-negative FADD mutant (FADD-DN), thereby excluding a role of death receptor signaling in the amplification loop and drug-induced apoptosis. The inhibitor experiments were corroborated by the use of BJAB cells overexpressing the natural serpin protease inhibitor, cytokine response modifier A. These data demonstrate that the complete activation of mitochondria, release of cytochrome c, and execution of drug-induced apoptosis require a mitochondrial amplification loop that depends on caspases-3 and -8 activation. In addition, this is the first report to demonstrate death receptor-independent caspase-8 autoprocessing in vivo.


Oncogene | 2002

Ceramide induces mitochondrial activation and apoptosis via a Bax-dependent pathway in human carcinoma cells

Clarissa von Haefen; Thomas Wieder; Bernd Gillissen; Lilian Stärck; Vilma Graupner; Bernd Dörken; Peter T. Daniel

The intracellular pathways leading to mitochondrial activation and subsequent cell death in the ceramide-mediated stress response have been intensively studied in recent years. Experimental evidence has been provided that ceramide-induced apoptosis is inhibited by overexpression of antiapoptotic proteins of the Bcl-2 family. However, the direct effect of proapoptotic gene products, e.g. Bax, on ceramide-induced death signalling has not yet been studied in detail. In the present work, we show by measurement of mitochondrial permeability transition, cytochrome c release, activation of caspase-3 and DNA fragmentation that ceramide-induced apoptosis is marginal in Bax-negative DU 145 cells. Reconstitution of Bax by generation of DU 145 cells stably expressing this proapoptotic factor, clearly enhanced ceramide-induced apoptosis at all levels of the mitochondrial signalling cascade. Using the broad-range caspase inhibitor zVAD-fmk and zDEVD-fmk, an inhibitor of caspase-3-like activities, we demonstrate that the ceramide-induced mitochondrial activation in Bax-transfected DU 145 cells is caspase-independent. On the other hand, apoptotic events located downstream of the mitochondria, e.g. DNA fragmentation, were shown to be caspase-dependent. This influence of Bax on ceramide-induced apoptosis was confirmed in another cellular system: whereas Bax-positive HCT116 wild type cells were very sensitive towards induction of cell death by C2-ceramide, sensitivity of Bax knock-out HCT116 cells was significantly reduced. Thus, we conclude that Bax is a key activator of ceramide-mediated death pathways.


Oncogene | 2002

Adenovirus-mediated overexpression of p14(ARF) induces p53 and Bax-independent apoptosis.

Philipp Hemmati; Bernhard Gillissen; Clarissa von Haefen; Jana Wendt; Lilian Stärck; Dilek Güner; Bernd Dörken; Peter T. Daniel

The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16INK4a and p14ARF, which are frequently inactivated in human cancer. Whereas p16INK4a acts through engagement of the Rb-cdk4/6-cyclin D pathway, both the pro-apoptotic and cell cycle-regulatory functions of p14ARF were shown to be primarily dependent on the presence of functional p53. Recent reports have also implicated p14ARF in p53-independent mechanisms of cell cycle regulation and apoptosis induction, respectively. To further explore the pro-apoptotic function of p14ARF in relation to functional cellular p53, we constructed a replication-deficient adenoviral vector for overexpression of p14ARF (Ad-p14ARF). As expected, Ad-p14ARF efficiently induced apoptosis in p53/Rb wild-type U-2OS osteosarcoma cells at low multiplicities of infection. Interestingly, Ad-p14ARF also induced apoptosis in both p53-deleted SAOS-2 osteosarcoma cells and HCT116 colon cancer cells with a bi-allelic knock-out of p53 (HCT116-p53−/−). Similarly, adenovirus-mediated overexpression of p14ARF induced apoptosis in p53/Bax-mutated DU145 prostate cancer cells as well as in HCT116 cells devoid of functional Bax (HCT116-Bax−/−). Restoration of Bax expression by retroviral gene transfer in DU145 cells did not further enhance p14ARF-triggered cell death. Infection with Ad-p14ARF induced activation of mitochondrial permeability shift transition, caspase activation and apoptotic DNA fragmentation irrespective of the presence or absence of either Bax or functional cellular p53. Nevertheless, overexpression of the anti-apoptotic Bcl-2 homolog Bcl-xL markedly inhibited p14ARF-induced apoptosis. This may indicate that p14ARF triggers a so far unknown activator of mitochondrial apoptosis which can be inhibited by Bcl-2 but which acts either independently or downstream of Bax. Taken together, this report demonstrates the participation of signaling pathways apart from the p53/Mdm-2 rheostat and Bax in p14ARF-mediated apoptosis.


Oncogene | 2001

Overexpression of caspase-3 restores sensitivity for drug-induced apoptosis in breast cancer cell lines with acquired drug resistance

Katrin Friedrich; Thomas Wieder; Clarissa von Haefen; Silke Radetzki; Reiner U. Jänicke; Klaus Schulze-Osthoff; Bernd Dörken; Peter T. Daniel

In this study, we asked whether overexpression of caspase-3, a central downstream executioner of apoptotic pathways, might sensitize breast cancer cells with acquired drug resistance (MT1/ADR) to drug-induced apoptosis. As control, we employed caspase-3 negative and caspase-3-transfected MCF-7 cells. Whereas mock-transfected MCF-7 cells were resistent to epirubicin, etoposide and paclitaxel (taxol), the same drugs led to breakdown of nuclear DNA in caspase-3-transfected MCF-7 cells. MT1/ADR cells express low levels of wild type caspase-3 but show defective caspase activation and apoptosis upon drug exposure. These cells also display a less efficient activation of the mitochondrial permeability transition. Caspase-3-transfected MT1/ADR clones showed a 2.8-fold increase in the protein level and a 3.7-fold higher specific enzyme activity. Procaspase-3 overexpression was not toxic and did not affect background apoptosis. Interestingly, procaspase-3-transfected MT1/ADR cells were more sensitive to cytotoxic drugs as compared with vector-transfected controls and DNA fragmentation nearly reached the levels of the original drug sensitive MT1 cells. Thus, overexpression of caspase-3 enhances chemosensitivity especially in situations where activation of the mitochondrial apoptosome is disturbed.


Oncogene | 2004

Multidomain Bcl-2 homolog Bax but not Bak mediates synergistic induction of apoptosis by TRAIL and 5-FU through the mitochondrial apoptosis pathway

Clarissa von Haefen; Bernhard Gillissen; Philipp Hemmati; Jana Wendt; Dilek Güner; Alicja Mrozek; Claus Belka; Bernd Dörken; Peter T. Daniel

The death ligand TRAIL synergizes with DNA-damaging therapies such as chemotherapeutic drugs or ionizing irradiation. Here, we show that the synergism of TRAIL and 5-fluorouracil (5-FU) and cross-sensitization between TRAIL and 5-FU for induction of apoptosis, entirely depend on Bax proficiency in human DU145 and HCT116 carcinoma cells. DU145 prostate carcinoma cells that have lost Bax protein expression due to mutation fail to release cytochrome c and to activate caspase-3 and -9 when exposed to TRAIL and 5-FU. In contrast, TRAIL sensitized for 5-FU-induced apoptosis and vice versa upon reconstitution of Bax expression. Isobolographic analyses of ED50 doses for 5-FU at increasing TRAIL concentrations showed a clear synergism of TRAIL and 5-FU in Bax-expressing cells. In contrast, the effect was merely additive in DU145 cells lacking Bax. Notably, both DU145 and HCT116 Bax-deficient cells still express Bak. This indicates that Bak is not sufficient to mediate cross-sensitization and synergism between 5-FU and TRAIL. Stable overexpression of Bak in DU145 sensitized for epirubicin-induced apoptosis but failed to confer synergy between TRAIL and 5-FU. Moreover, we show by the use of EGFP-tagged Bax and Bak that TRAIL and 5-FU synergistically trigger oligomerization and clustering of Bax but not Bak. These data clearly establish distinct roles for Bax and Bak in linking the TRAIL death receptor pathway to the mitochondrial apoptosis signaling cascade and delineate a higher degree of specificity in signaling for cell death by multidomain Bcl-2 homologs.


Oncogene | 2005

TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway.

Jana Wendt; Clarissa von Haefen; Philipp Hemmati; Claus Belka; Bernd Dörken; Peter T. Daniel

The death ligand TRAIL has been suggested as a suitable biological agent for the selective induction of cell death in cancer cells. Moreover, TRAIL synergizes with DNA-damaging therapies such as chemotherapeutic drugs or ionizing irradiation (IR). Here, we show that synergy of TRAIL and IR, that is, crosssensitization between TRAIL and IR for induction of apoptosis, entirely depends on Bax proficiency in human DU145 and HCT116 carcinoma cells. DU145 prostate carcinoma cells that have lost Bax protein expression due to mutation fail to activate caspase-3 and -9 when exposed to TRAIL and IR. In contrast, TRAIL sensitized for IR-induced apoptosis and vice versa upon reconstitution of Bax expression. Notably, both DU145 and HCT116 still express significant levels of the multidomain proapoptotic Bcl-2 homolog Bak. This indicates that Bak is not sufficient to mediate crosssensitization and synergism between IR and TRAIL. These data clearly establish distinct roles for Bax and Bak in linking the TRAIL death receptor pathway to the mitochondrial apoptosis signaling cascade upon DNA damage by IR.


Oncogene | 2002

The apoptosis promoting Bcl-2 homologues Bak and Nbk/Bik overcome drug resistance in Mdr-1-negative and Mdr-1-overexpressing breast cancer cell lines.

Silke Radetzki; Claus-Henning Köhne; Clarissa von Haefen; Bernhard Gillissen; Isrid Sturm; Bernd Dörken; Peter T. Daniel

We previously demonstrated that the forced expression of pro-caspase-3 can revert acquired chemoresistance in MT1-Adr breast cancer cells which show a defective activation of the mitochondrial pathway of apoptosis. We now asked whether the manipulation of mitochondrial apoptosis signaling can revert different types of drug resistance, i.e. the resistance due to impaired mitochondrial activation in the MT1-Adr cells and the resistance in MT3-Adr cells which is caused by increased expression of the Mdr-1/p-glycoprotein ABC transporter. Here we show that Bcl-2 overexpression is the underlying cause for the resistant phenotype in the MT1-Adr cells. Overexpression of the apoptosis-promoting Bax homologue Bak or the BH3 only protein Nbk/Bik reverts, as expected, acquired drug resistance in the MT1-Adr cells as recently demonstrated for pro-caspase-3. Moreover, we show that both apoptosis-promoters, Nbk/Bik and Bak, antagonize acquired chemoresistance for epirubicin-mediated apoptosis in MT3-Adr breast cancer cells. Neither drug uptake nor drug efflux were influenced by Bak or Nbk/Bik. Thus, our data show that manipulation of the downstream apoptosis signaling cascade by Bak and Nbk/Bik can overcome not only drug resistance due to mitochondrial apoptosis deficiency (in the MT1-Adr cells) but also classical, i.e. efflux-mediated, resistance for drug-induced cell death in the MT3-Adr cell line. Nbk/Bik and Bak could therefore be target genes to increase chemosensitivity and overcome different types of drug resistance.


Brain Behavior and Immunity | 2010

Erythropoietin attenuates hyperoxia-induced oxidative stress in the developing rat brain.

Marco Sifringer; Daniela Brait; Ulrike Weichelt; Gabriel Zimmerman; Stefanie Endesfelder; Felix Brehmer; Clarissa von Haefen; Alon Friedman; Hermona Soreq; Ivo Bendix; Bettina Gerstner; Ursula Felderhoff-Mueser

Oxygen toxicity contributes to the pathogenesis of adverse neurological outcome in survivors of preterm birth in clinical studies. In infant rodent brains, hyperoxia triggers widespread apoptotic neurodegeneration, induces pro-inflammatory cytokines and inhibits growth factor signaling cascades. Since a tissue-protective effect has been observed for recombinant erythropoietin (rEpo), we hypothesized that rEpo would influence hyperoxia-induced oxidative stress in the developing rat brain. The aim of this study was to investigate the level of glutathione (reduced and oxidized), lipid peroxidation and the expression of heme oxygenase-1 (HO-1) and acetylcholinesterase (AChE) after hyperoxia and rEpo treatment. Six-day-old Wistar rats were exposed to 80% oxygen for 2-48 h and received 20,000 IU/kg rEpo intraperitoneally (i.p.). Sex-matched littermates kept under room air and injected with normal saline or rEpo served as controls. Treatment with rEpo significantly reduced hyperoxia-induced upregulation of oxidized glutathione (GSSG) and malondialdehyde, a product of lipid breakdown, whereas reduced glutathione (GSH) was upregulated by rEpo. In parallel, hyperoxia-treated immature rat brains revealed rEpo-suppressible upregulation of synaptic AChE-S as well as of the stress-inducible AChE-R variant, together predicting rEpo-protected cholinergic signaling and restrained inflammatory reactions. Furthermore, treatment with rEpo induced upregulation of HO-1 on mRNA, protein and activity level in the developing rat brain. Our results suggest that rEpo generates its protective effect against oxygen toxicity by a reduction of diverse oxidative stress parameters and by limiting the stressor-inducible changes in both HO-1 and cholinergic functions.


Journal of Biological Chemistry | 2005

p14ARF Induces G2 Cell Cycle Arrest in p53- and p21-deficient Cells by Down-regulating p34cdc2 Kinase Activity

Guillaume Normand; Philipp Hemmati; Berlinda Verdoodt; Clarissa von Haefen; Jana Wendt; Dilek Güner; Evelyne May; Bernd Dörken; Peter T. Daniel

The human INK4a gene locus encodes two structurally unrelated tumor suppressor proteins, p16INK4a and p14ARF. Although primarily proposed to require a functional p53·Mdm-2 signaling axis, recently p14ARF has been implicated in p53-independent cell cycle regulation. Here we show that p14ARF preferentially induces a G2 arrest in tumor cells lacking functional p53 and/or p21. Expression of p14ARF impaired mitotic entry and enforced a primarily cytoplasmic localization of p34cdc2 that was associated with a decrease in p34cdc2 kinase activity and reduced p34cdc2 protein expression. A direct physical interaction between p14ARF and p34cdc2 was, nevertheless, ruled out by lack of co-immunoprecipitation. The p14ARF-induced depletion of p34cdc2 was associated with impaired cdc25C phosphatase expression and a prominent shift to inhibitory Tyr-15-phosphorylation in G2-arrested cells lacking either p53, p21, or both. Finally, reconstitution of p34cdc2 using a constitutively active, phosphorylation-deficient p34cdc2AF mutant alleviated this p14ARF-induced G2 arrest, thereby allowing cell cycle progression. Taken together, these data indicate that p14ARF arrests cells lacking functional p53/p21 in the G2 phase of the cell cycle by targeting p34cdc2 kinase. This may represent an important fail-safe mechanism by which p14ARF protects p53/p21-deficient cells from unrestrained proliferation.


Oncogene | 2005

Loss of p21 disrupts p14ARF-induced G1 cell cycle arrest but augments p14ARF-induced apoptosis in human carcinoma cells

Philipp Hemmati; Guillaume Normand; Berlinda Verdoodt; Clarissa von Haefen; Anne Hasenjäger; Dilek Güner; Jana Wendt; Bernd Dörken; Peter T. Daniel

The human INK4a locus encodes two structurally unrelated tumor suppressor proteins, p16INK4a and p14ARF (p19ARF in the mouse), which are frequently inactivated in human cancer. Both the proapoptotic and cell cycle-regulatory functions of p14ARF were initially proposed to be strictly dependent on a functional p53/mdm-2 tumor suppressor pathway. However, a number of recent reports have implicated p53-independent mechanisms in the regulation of cell cycle arrest and apoptosis induction by p14ARF. Here, we show that the G1 cell cycle arrest induced by p14ARF entirely depends on both p53 and p21 in human HCT116 and DU145 carcinoma cells. In contrast, neither loss of p53 nor p21 impaired apoptosis induction by p14ARF as evidenced by nuclear DNA fragmentation, phosphatidyl serine exposure, and caspase activation, which included caspase-3/7- and caspase-9-like activities. However, lack of functional p21 resulted in the accumulation of cells in G2/M phase of the cell cycle and markedly enhanced p14ARF-induced apoptosis that was, nevertheless, efficiently inhibited by the cell permeable broad-spectrum caspase inhibitor zVAD-fmk (valyl-alanyl-aspartyl-(O)-methyl)-fluoromethylketone). Thus, loss of cell cycle restriction point control in the absence of p21 may interfere with p14ARF-induced apoptosis. Finally, these data indicate that the signaling events required for G1 cell cycle arrest and apoptosis induction by p14ARF dissociate upstream of p53.

Collaboration


Dive into the Clarissa von Haefen's collaboration.

Top Co-Authors

Avatar

Peter T. Daniel

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dilek Güner

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ivo Bendix

University of Duisburg-Essen

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge