Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clark A. Sehon is active.

Publication


Featured researches published by Clark A. Sehon.


Journal of Biological Chemistry | 2013

Toll-like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL

William J. Kaiser; Haripriya Sridharan; Chunzi Huang; Pratyusha Mandal; Jason W. Upton; Peter J. Gough; Clark A. Sehon; Robert W. Marquis; John Bertin; Edward S. Mocarski

Background: RIP3-dependent programmed necrosis is an alternative to apoptosis. Results: When caspase-8 is compromised, TRIF-dependent TLRs directly activate RIP3 kinase through RHIM-dependent interactions. Conclusion: TRIF mediates direct RHIM-dependent signaling, triggering necrosis via RIP3 and MLKL. Significance: Programmed necrosis eliminates cells following stimulation of either MyD88 or TRIF signaling pathways that converge on RIP3. Toll-like receptor (TLR) signaling is triggered by pathogen-associated molecular patterns that mediate well established cytokine-driven pathways, activating NF-κB together with IRF3/IRF7. In addition, TLR3 drives caspase 8-regulated programmed cell death pathways reminiscent of TNF family death receptor signaling. We find that inhibition or elimination of caspase 8 during stimulation of TLR2, TLR3, TLR4, TLR5, or TLR9 results in receptor interacting protein (RIP) 3 kinase-dependent programmed necrosis that occurs through either TIR domain-containing adapter-inducing interferon-β (TRIF) or MyD88 signal transduction. TLR3 or TLR4 directly activates programmed necrosis through a RIP homotypic interaction motif-dependent association of TRIF with RIP3 kinase (also called RIPK3). In fibroblasts, this pathway proceeds independent of RIP1 or its kinase activity, but it remains dependent on mixed lineage kinase domain-like protein (MLKL) downstream of RIP3 kinase. Here, we describe two small molecule RIP3 kinase inhibitors and employ them to demonstrate the common requirement for RIP3 kinase in programmed necrosis induced by RIP1-RIP3, DAI-RIP3, and TRIF-RIP3 complexes. Cell fate decisions following TLR signaling parallel death receptor signaling and rely on caspase 8 to suppress RIP3-dependent programmed necrosis whether initiated directly by a TRIF-RIP3-MLKL pathway or indirectly via TNF activation and the RIP1-RIP3-MLKL necroptosis pathway.


Cell Reports | 2014

MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates

Yves Dondelinger; Wim Declercq; Sylvie Montessuit; Ria Roelandt; Amanda Gonçalves; Inge Bruggeman; Paco Hulpiau; Kathrin Weber; Clark A. Sehon; Robert W. Marquis; John Bertin; Peter J. Gough; Savvas N. Savvides; Jean-Claude Martinou; Mathieu J.M. Bertrand; Peter Vandenabeele

Although mixed lineage kinase domain-like (MLKL) protein has emerged as a specific and crucial protein for necroptosis induction, how MLKL transduces the death signal remains poorly understood. Here, we demonstrate that the full four-helical bundle domain (4HBD) in the N-terminal region of MLKL is required and sufficient to induce its oligomerization and trigger cell death. Moreover, we found that a patch of positively charged amino acids on the surface of the 4HBD binds to phosphatidylinositol phosphates (PIPs) and allows recruitment of MLKL to the plasma membrane. Importantly, we found that recombinant MLKL, but not a mutant lacking these positive charges, induces leakage of PIP-containing liposomes as potently as BAX, supporting a model in which MLKL induces necroptosis by directly permeabilizing the plasma membrane. Accordingly, we found that inhibiting the formation of PI(5)P and PI(4,5)P2 specifically inhibits tumor necrosis factor (TNF)-mediated necroptosis but not apoptosis.


Molecular Cell | 2014

RIP3 Induces Apoptosis Independent of Pronecrotic Kinase Activity

Pratyusha Mandal; Scott B. Berger; Sirika Pillay; Kenta Moriwaki; Chunzi Huang; Hongyan Guo; John D. Lich; Joshua N. Finger; Viera Kasparcova; Bart Votta; Michael T. Ouellette; Bryan W. King; David D. Wisnoski; Ami S. Lakdawala; Michael P. DeMartino; Linda N. Casillas; Pamela A. Haile; Clark A. Sehon; Robert W. Marquis; Jason W. Upton; Lisa P. Daley-Bauer; Linda Roback; Nancy Ramia; Cole M. Dovey; Jan E. Carette; Francis Ka-Ming Chan; John Bertin; Peter J. Gough; Edward S. Mocarski; William J. Kaiser

Receptor-interacting protein kinase 3 (RIP3 or RIPK3) has emerged as a central player in necroptosis and a potential target to control inflammatory disease. Here, three selective small-molecule compounds are shown to inhibit RIP3 kinase-dependent necroptosis, although their therapeutic value is undermined by a surprising, concentration-dependent induction of apoptosis. These compounds interact with RIP3 to activate caspase 8 (Casp8) via RHIM-driven recruitment of RIP1 (RIPK1) to assemble a Casp8-FADD-cFLIP complex completely independent of pronecrotic kinase activities and MLKL. RIP3 kinase-dead D161N mutant induces spontaneous apoptosis independent of compound, whereas D161G, D143N, and K51A mutants, like wild-type, only trigger apoptosis when compound is present. Accordingly, RIP3-K51A mutant mice (Rip3(K51A/K51A)) are viable and fertile, in stark contrast to the perinatal lethality of Rip3(D161N/D161N) mice. RIP3 therefore holds both necroptosis and apoptosis in balance through a Ripoptosome-like platform. This work highlights a common mechanism unveiling RHIM-driven apoptosis by therapeutic or genetic perturbation of RIP3.


Journal of Medicinal Chemistry | 2008

Potent, Selective and Orally Bioavailable Dihydropyrimidine Inhibitors of Rho Kinase (ROCK1) as Potential Therapeutic Agents for Cardiovascular Diseases

Clark A. Sehon; Gren Z. Wang; Andrew Q. Viet; Krista B. Goodman; Sarah E. Dowdell; Patricia A. Elkins; Simon F. Semus; Christopher Evans; Larry J. Jolivette; Robert B. Kirkpatrick; Edward Dul; Sanjay S. Khandekar; Tracey Yi; Lois L. Wright; Gary K. Smith; David J. Behm; Ross Bentley; Christopher P. Doe; Erding Hu; Dennis Lee

Recent studies using known Rho-associated kinase isoform 1 (ROCK1) inhibitors along with cellular and molecular biology data have revealed a pivotal role of this enzyme in many aspects of cardiovascular function. Here we report a series of ROCK1 inhibitors which were originally derived from a dihydropyrimidinone core 1. Our efforts focused on the optimization of dihydropyrimidine 2, which resulted in the identification of a series of dihydropyrimidines with improved pharmacokinetics and P450 properties.


Journal of Medicinal Chemistry | 2017

Discovery of a First-in-Class Receptor Interacting Protein 1 (RIP1) Kinase Specific Clinical Candidate (GSK2982772) for the Treatment of Inflammatory Diseases

Philip A. Harris; Scott B. Berger; Jae U. Jeong; Rakesh Nagilla; Deepak Bandyopadhyay; Nino Campobasso; Carol Capriotti; Julie A. Cox; Lauren Dare; Xiaoyang Dong; Patrick M. Eidam; Joshua N. Finger; Sandra J. Hoffman; James Kang; Viera Kasparcova; Bryan W. King; Ruth Lehr; Yunfeng Lan; Lara Kathryn Leister; John D. Lich; Thomas T. MacDonald; Nathan A. Miller; Michael T. Ouellette; Christina S. Pao; Attiq Rahman; Michael Reilly; Alan R. Rendina; Elizabeth J. Rivera; Michelle Schaeffer; Clark A. Sehon

RIP1 regulates necroptosis and inflammation and may play an important role in contributing to a variety of human pathologies, including immune-mediated inflammatory diseases. Small-molecule inhibitors of RIP1 kinase that are suitable for advancement into the clinic have yet to be described. Herein, we report our lead optimization of a benzoxazepinone hit from a DNA-encoded library and the discovery and profile of clinical candidate GSK2982772 (compound 5), currently in phase 2a clinical studies for psoriasis, rheumatoid arthritis, and ulcerative colitis. Compound 5 potently binds to RIP1 with exquisite kinase specificity and has excellent activity in blocking many TNF-dependent cellular responses. Highlighting its potential as a novel anti-inflammatory agent, the inhibitor was also able to reduce spontaneous production of cytokines from human ulcerative colitis explants. The highly favorable physicochemical and ADMET properties of 5, combined with high potency, led to a predicted low oral dose in humans.


PLOS ONE | 2012

A Key Role for the Endothelium in NOD1 Mediated Vascular Inflammation: Comparison to TLR4 Responses

Timothy Gatheral; Daniel M. Reed; Laura Moreno; Peter J. Gough; Bart Votta; Clark A. Sehon; David J. Rickard; John Bertin; Eric Lim; Andrew G. Nicholson; Jane A. Mitchell

Understanding the mechanisms by which pathogens induce vascular inflammation and dysfunction may reveal novel therapeutic targets in sepsis and related conditions. The intracellular receptor NOD1 recognises peptidoglycan which features in the cell wall of Gram negative and some Gram positive bacteria. NOD1 engagement generates an inflammatory response via activation of NFκB and MAPK pathways. We have previously shown that stimulation of NOD1 directly activates blood vessels and causes experimental shock in vivo. In this study we have used an ex vivo vessel-organ culture model to characterise the relative contribution of the endothelium in the response of blood vessels to NOD1 agonists. In addition we present the novel finding that NOD1 directly activates human blood vessels. Using human cultured cells we confirm that endothelial cells respond more avidly to NOD1 agonists than vascular smooth muscle cells. Accordingly we have sought to pharmacologically differentiate NOD1 and TLR4 mediated signalling pathways in human endothelial cells, focussing on TAK1, NFκB and p38 MAPK. In addition we profile novel inhibitors of RIP2 and NOD1 itself, which specifically inhibit NOD1 ligand induced inflammatory signalling in the vasculature. This paper is the first to demonstrate activation of whole human artery by NOD1 stimulation and the relative importance of the endothelium in the sensing of NOD1 ligands by vessels. This data supports the potential utility of NOD1 and RIP2 as therapeutic targets in human disease where vascular inflammation is a clinical feature, such as in sepsis and septic shock.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Pharmacological Inhibition of C-C Chemokine Receptor 2 Decreases Macrophage Infiltration in the Aortic Root of the Human C-C Chemokine Receptor 2/Apolipoprotein E −/− Mouse: Magnetic Resonance Imaging Assessment

Alan R. Olzinski; Gregory H. Turner; Roberta E. Bernard; Heather Karr; Carla A. Cornejo; Karpagam Aravindhan; Bao Hoang; Michael A. Ringenberg; Pu Qin; Krista B. Goodman; Robert N. Willette; Colin H. Macphee; Beat M. Jucker; Clark A. Sehon; Peter J. Gough

Purpose—This study assessed the pharmacological effect of a novel selective C-C chemokine receptor (CCR) 2 antagonist (GSK1344386B) on monocyte/macrophage infiltration into atherosclerotic plaque using magnetic resonance imaging (MRI) in an atherosclerotic mouse model. Methods and Results—Apolipoprotein E−/− mice expressing human CCR2 were fed a Western diet (vehicle group) or a Western diet plus10 mg/kg per day of GSK1344386B (GSK1344386B group). After the baseline MRI, mice were implanted with osmotic pumps containing angiotensin II, 1000 ng/kg per minute, to accelerate lesion formation. After five weeks of angiotensin II administration, mice received ultrasmall superparamagnetic iron oxide, an MRI contrast agent for the assessment of monocyte/macrophage infiltration to the plaque, and underwent imaging. After imaging, mice were euthanized, and the heart and aorta were harvested for ex vivo MRI and histopathological examination. After 5 weeks of dietary dosing, there were no significant differences between groups in body or liver weight or plasma cholesterol concentrations. An in vivo MRI reflected a decrease in ultrasmall superparamagnetic iron oxide contrast agent uptake in the aortic arch of the GSK1344386B group (P<0.05). An ex vivo MRI of the aortic root also reflected decreased ultrasmall superparamagnetic iron oxide uptake in the GSK1344386B group and was verified by absolute iron analysis (P<0.05). Although there was no difference in aortic root lesion area between groups, there was a 30% reduction in macrophage area observed in the GSK1344386B group (P<0.05). Conclusion—An MRI was used to noninvasively assess the decreased macrophage content in the atherosclerotic plaque after selective CCR2 inhibition.


British Journal of Pharmacology | 2010

GSK1562590, a slowly dissociating urotensin‐II receptor antagonist, exhibits prolonged pharmacodynamic activity ex vivo

David J. Behm; Nambi Aiyar; Alan R. Olzinski; John J. McAtee; Mark A. Hilfiker; Jason W. Dodson; Sarah E. Dowdell; Gren Z. Wang; Krista B. Goodman; Clark A. Sehon; Harpel; Robert N. Willette; Michael J. Neeb; Ca Leach; Stephen A. Douglas

BACKGROUND AND PURPOSE Recently identified antagonists of the urotensin–II (U‐II) receptor (UT) are of limited utility for investigating the (patho)physiological role of U‐II due to poor potency and limited selectivity and/or intrinsic activity.


PLOS ONE | 2013

Identification of Benzimidazole Diamides as Selective Inhibitors of the Nucleotide-Binding Oligomerization Domain 2 (NOD2) Signaling Pathway

David J. Rickard; Clark A. Sehon; Viera Kasparcova; Lorena A. Kallal; Xin Zeng; Monica N. Montoute; Tushar Chordia; Derek D. Poore; Hu Li; Zining Wu; Patrick M. Eidam; Pamela A. Haile; Jong Yu; John G. Emery; Robert W. Marquis; Peter J. Gough; John Bertin

NOD2 is an intracellular pattern recognition receptor that assembles with receptor-interacting protein (RIP)-2 kinase in response to the presence of bacterial muramyl dipeptide (MDP) in the host cell cytoplasm, thereby inducing signals leading to the production of pro-inflammatory cytokines. The dysregulation of NOD2 signaling has been associated with various inflammatory disorders suggesting that small-molecule inhibitors of this signaling complex may have therapeutic utility. To identify inhibitors of the NOD2 signaling pathway, we utilized a cell-based screening approach and identified a benzimidazole diamide compound designated GSK669 that selectively inhibited an MDP-stimulated, NOD2-mediated IL-8 response without directly inhibiting RIP2 kinase activity. Moreover, GSK669 failed to inhibit cytokine production in response to the activation of Toll-like receptor (TLR)-2, tumor necrosis factor receptor (TNFR)-1 and closely related NOD1, all of which share common downstream components with the NOD2 signaling pathway. While the inhibitors blocked MDP-induced NOD2 responses, they failed to block signaling induced by NOD2 over-expression or single stranded RNA, suggesting specificity for the MDP-induced signaling complex and activator-dependent differences in NOD2 signaling. Investigation of structure-activity relationship allowed the identification of more potent analogs that maintained NOD2 selectivity. The largest boost in activity was achieved by N-methylation of the C2-ethyl amide group. These findings demonstrate that the NOD2 signaling pathway is amenable to modulation by small molecules that do not target RIP2 kinase activity. The compounds we identified should prove useful tools to investigate the importance of NOD2 in various inflammatory processes and may have potential clinical utility.


Bioorganic & Medicinal Chemistry Letters | 2008

Aminomethylpiperazines as selective urotensin antagonists.

Mark A. Hilfiker; Daohua Zhang; Sarah E. Dowdell; Krista B. Goodman; John J. McAtee; Jason W. Dodson; Andrew Q. Viet; Gren Z. Wang; Clark A. Sehon; David J. Behm; Zining Wu; Luz H. Carballo; Stephen A. Douglas; Michael J. Neeb

Aminomethylpiperazines, reported previously as being kappa-opioid receptor agonists, were identified as lead compounds in the development of selective urotensin receptor antagonists. Optimized substitution of the piperazine moiety has provided high affinity urotensin receptor antagonists with greater than 100-fold selectivity over the kappa-opioid receptor. Select compounds were found to inhibit urotensin-induced vasoconstriction in isolated rat aortic rings consistent with the hypothesis that an urotensin antagonist may be useful for the treatment of hypertension.

Collaboration


Dive into the Clark A. Sehon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter J. Gough

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge