Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clary B. Clish is active.

Publication


Featured researches published by Clary B. Clish.


Nature Medicine | 2011

Metabolite profiles and the risk of developing diabetes

Thomas J. Wang; Martin G. Larson; Susan Cheng; Eugene P. Rhee; Elizabeth L. McCabe; Gregory D. Lewis; Caroline S. Fox; Paul F. Jacques; Céline Fernandez; Christopher J. O'Donnell; Stephen A Carr; Vamsi K. Mootha; Jose C. Florez; Amanda Souza; Olle Melander; Clary B. Clish; Robert E. Gerszten

Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography–tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.


Nature Immunology | 2001

Lipid mediator class switching during acute inflammation: signals in resolution

Bruce D. Levy; Clary B. Clish; Birgitta Schmidt; Karsten Gronert; Charles N. Serhan

Leukotrienes (LTs) and prostaglandins (PGs) amplify acute inflammation, whereas lipoxins (LXs) have unique anti-inflammatory actions. Temporal analyses of these eicosanoids in clinical and experimental exudates showed early coordinate appearance of LT and PG with polymorphonuclear neutrophil (PMN) recruitment. This was followed by LX biosynthesis, which was concurrent with spontaneous resolution. Human peripheral blood PMNs exposed to PGE2 (as in exudates) switched eicosanoid biosynthesis from predominantly LTB4 and 5-lipoxygenase (5-LO)–initiated pathways to LXA4, a 15-LO product that “stopped” PMN infiltration. These results indicate that first-phase eicosanoids promote a shift to anti-inflammatory lipids: functionally distinct lipid-mediator profiles switch during acute exudate formation to “reprogram” the exudate PMNs to promote resolution.


Molecular Cell | 2010

Activation of a metabolic gene regulatory network downstream of mTOR complex 1.

Katrin Düvel; Jessica L. Yecies; Suchithra Menon; Pichai Raman; Alex I. Lipovsky; Amanda Souza; Ellen Triantafellow; Qicheng Ma; Regina Gorski; Stephen Cleaver; Matthew G. Vander Heiden; Jeffrey P. MacKeigan; Peter Finan; Clary B. Clish; Leon O. Murphy; Brendan D. Manning

Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.


Nature | 2013

Succinate is an inflammatory signal that induces IL-1β through HIF-1α

G. M. Tannahill; Anne M. Curtis; J. Adamik; Eva M. Palsson-McDermott; Anne F. McGettrick; Gautam Goel; Christian Frezza; N. J. Bernard; Beth Kelly; Niamh Foley; Liang Zheng; A. Gardet; Z. Tong; S. S. Jany; Sinead C. Corr; M. Haneklaus; B. E. Caffrey; Kerry A. Pierce; Sarah R. Walmsley; F. C. Beasley; Eoin P. Cummins; Nizet; M. Whyte; Cormac T. Taylor; Hening Lin; S. L. Masters; Eyal Gottlieb; V. P. Kelly; Clary B. Clish; P. E. Auron

Macrophages activated by the Gram-negative bacterial product lipopolysaccharide switch their core metabolism from oxidative phosphorylation to glycolysis. Here we show that inhibition of glycolysis with 2-deoxyglucose suppresses lipopolysaccharide-induced interleukin-1β but not tumour-necrosis factor-α in mouse macrophages. A comprehensive metabolic map of lipopolysaccharide-activated macrophages shows upregulation of glycolytic and downregulation of mitochondrial genes, which correlates directly with the expression profiles of altered metabolites. Lipopolysaccharide strongly increases the levels of the tricarboxylic-acid cycle intermediate succinate. Glutamine-dependent anerplerosis is the principal source of succinate, although the ‘GABA (γ-aminobutyric acid) shunt’ pathway also has a role. Lipopolysaccharide-induced succinate stabilizes hypoxia-inducible factor-1α, an effect that is inhibited by 2-deoxyglucose, with interleukin-1β as an important target. Lipopolysaccharide also increases succinylation of several proteins. We therefore identify succinate as a metabolite in innate immune signalling, which enhances interleukin-1β production during inflammation.


Science | 2012

Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation

Mohit Jain; Roland Nilsson; Sonia Sharma; Nikhil Madhusudhan; Toshimori Kitami; Amanda Souza; Ran Kafri; Marc W. Kirschner; Clary B. Clish; Vamsi K. Mootha

More Glycine, Please To better characterize metabolic properties of cancer cells, Jain et al. (p. 1040; see the Perspective by Tomita and Kami) measured systematically the concentrations of hundreds of metabolites in cell culture medium in which 60 different cancer cell lines were growing. The fastest growing cancer cells tended to consume glycine, whereas more slowly growing cells excreted some glycine. The rapidly growing cancer cells appeared to need glycine for synthesis of purine nucleotides required for continued synthesis of DNA. Interfering with glycine metabolism slowed growth of the rapidly proliferating cancer cells. Thus, an increased dependence on glycine by rapidly growing cancer cells could potentially provide a target for therapeutic intervention. Rapidly growing cancer cells rely on the amino acid glycine to make nucleotides. Metabolic reprogramming has been proposed to be a hallmark of cancer, yet a systematic characterization of the metabolic pathways active in transformed cells is currently lacking. Using mass spectrometry, we measured the consumption and release (CORE) profiles of 219 metabolites from media across the NCI-60 cancer cell lines, and integrated these data with a preexisting atlas of gene expression. This analysis identified glycine consumption and expression of the mitochondrial glycine biosynthetic pathway as strongly correlated with rates of proliferation across cancer cells. Antagonizing glycine uptake and its mitochondrial biosynthesis preferentially impaired rapidly proliferating cells. Moreover, higher expression of this pathway was associated with greater mortality in breast cancer patients. Increased reliance on glycine may represent a metabolic vulnerability for selectively targeting rapid cancer cell proliferation.


Cell | 2010

The Histone Deacetylase Sirt6 Regulates Glucose Homeostasis via Hif1α

Lei Zhong; Agustina D'Urso; Debra Toiber; Carlos Sebastian; Ryan E. Henry; Douangsone D. Vadysirisack; Alexander R. Guimaraes; Brett Marinelli; Jakob D. Wikstrom; Tomer Nir; Clary B. Clish; Bhavapriya Vaitheesvaran; Othon Iliopoulos; Irwin J. Kurland; Yuval Dor; Ralph Weissleder; Orian S. Shirihai; Leif W. Ellisen; Joaquín M. Espinosa; Raul Mostoslavsky

SIRT6 is a member of a highly conserved family of NAD(+)-dependent deacetylases with various roles in metabolism, stress resistance, and life span. SIRT6-deficient mice develop normally but succumb to a lethal hypoglycemia early in life; however, the mechanism underlying this hypoglycemia remained unclear. Here, we demonstrate that SIRT6 functions as a histone H3K9 deacetylase to control the expression of multiple glycolytic genes. Specifically, SIRT6 appears to function as a corepressor of the transcription factor Hif1alpha, a critical regulator of nutrient stress responses. Consistent with this notion, SIRT6-deficient cells exhibit increased Hif1alpha activity and show increased glucose uptake with upregulation of glycolysis and diminished mitochondrial respiration. Our studies uncover a role for the chromatin factor SIRT6 as a master regulator of glucose homeostasis and may provide the basis for novel therapeutic approaches against metabolic diseases, such as diabetes and obesity.


Cancer Cell | 2011

SIRT3 opposes reprogramming of cancer cell metabolism through HIF1α destabilization.

Lydia W.S. Finley; Arkaitz Carracedo; Jaewon Lee; Amanda Souza; Ainara Egia; Jiangwen Zhang; Julie Teruya-Feldstein; Paula I. Moreira; Sandra M. Cardoso; Clary B. Clish; Pier Paolo Pandolfi; Marcia C. Haigis

Tumor cells exhibit aberrant metabolism characterized by high glycolysis even in the presence of oxygen. This metabolic reprogramming, known as the Warburg effect, provides tumor cells with the substrates required for biomass generation. Here, we show that the mitochondrial NAD-dependent deacetylase SIRT3 is a crucial regulator of the Warburg effect. Mechanistically, SIRT3 mediates metabolic reprogramming by destabilizing hypoxia-inducible factor-1α (HIF1α), a transcription factor that controls glycolytic gene expression. SIRT3 loss increases reactive oxygen species production, leading to HIF1α stabilization. SIRT3 expression is reduced in human breast cancers, and its loss correlates with the upregulation of HIF1α target genes. Finally, we find that SIRT3 overexpression represses glycolysis and proliferation in breast cancer cells, providing a metabolic mechanism for tumor suppression.


Cell | 2014

Regulation of ferroptotic cancer cell death by GPX4.

Wan Seok Yang; Rohitha SriRamaratnam; Matthew Welsch; Kenichi Shimada; Rachid Skouta; Vasanthi Viswanathan; Jaime H. Cheah; Paul A. Clemons; Alykhan F. Shamji; Clary B. Clish; Lewis M. Brown; Albert W. Girotti; Virginia W. Cornish; Stuart L. Schreiber; Brent R. Stockwell

Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.


Journal of Biological Chemistry | 2000

A synthetic antagonist for the peroxisome proliferator-activated receptor gamma inhibits adipocyte differentiation.

Harold M. Wright; Clary B. Clish; Toshiyuki Mikami; Stefanie Hauser; Kazunori Yanagi; Ryuji Hiramatsu; Charles N. Serhan; Bruce M. Spiegelman

While searching for natural ligands for the peroxisome proliferator-activated receptor (PPAR) γ, we identified a synthetic compound that binds to this receptor. Bisphenol A diglycidyl ether (BADGE) is a ligand for PPARγ with aK d(app) of 100 μm. This compound has no apparent ability to activate the transcriptional activity of PPARγ; however, BADGE can antagonize the ability of agonist ligands such as rosiglitazone to activate the transcriptional and adipogenic action of this receptor. BADGE also specifically blocks the ability of natural adipogenic cell lines such as 3T3-L1 and 3T3-F442A cells to undergo hormone-mediated cell differentiation. These results provide the first pharmacological evidence that PPARγ activity is required for the hormonally induced differentiation of adipogenic cells.


Journal of Immunology | 2003

Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-inflammatory Lipid Mediators

Charles N. Serhan; Ashish Jain; Sylvie Marleau; Clary B. Clish; Alpdogan Kantarci; Balsam Behbehani; Sean P. Colgan; Gregory L. Stahl; Aksam Merched; Nicos A. Petasis; Lawrence Chan; Thomas E. Van Dyke

PGs and leukotrienes (LTs) mediate cardinal signs of inflammation; hence, their enzymes are targets of current anti-inflammatory therapies. Products of arachidonate 15-lipoxygenases (LO) types I and II display both beneficial roles, such as lipoxins (LXs) that stereoselectively signal counterregulation, as well as potential deleterious actions (i.e., nonspecific phospholipid degradation). In this study, we examined transgenic (TG) rabbits overexpressing 15-LO type I and their response to inflammatory challenge. Skin challenges with either LTB4 or IL-8 showed that 15-LO TG rabbits give markedly reduced neutrophil (PMN) recruitment and plasma leakage at dermal sites with LTB4. PMN from TG rabbits also exhibited a dramatic reduction in LTB4-stimulated granular mobilization that was not evident with peptide chemoattractants. Leukocytes from 15-LO TG rabbits gave enhanced LX production, underscoring differences in lipid mediator profiles compared with non-TG rabbits. Microbe-associated inflammation and leukocyte-mediated bone destruction were assessed by initiating acute periodontitis. 15-LO TG rabbits exhibited markedly reduced bone loss and local inflammation. Because enhanced LX production was associated with an increased anti-inflammatory status of 15-LO TG rabbits, a stable analog of 5S,6R,15S-trihydroxyeicosa-7E,9E,11Z,13E-tetraenoic acid (LXA4) was applied to the gingival crevice subject to periodontitis. Topical application with the 15-epi-16-phenoxy-para-fluoro-LXA4 stable analog (ATLa) dramatically reduced leukocyte infiltration, ensuing bone loss as well as inflammation. These results indicate that overexpression of 15-LO type I and LXA4 is associated with dampened PMN-mediated tissue degradation and bone loss, suggesting that enhanced anti-inflammation status is an active process. Moreover, they suggest that LXs can be targets for novel approaches to diseases, e.g., periodontitis and arthritis, where inflammation and bone destruction are features.

Collaboration


Dive into the Clary B. Clish's collaboration.

Top Co-Authors

Avatar

Robert E. Gerszten

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles N. Serhan

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Wang

Vanderbilt University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge