Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Bréchet is active.

Publication


Featured researches published by Claude Bréchet.


PLOS ONE | 2013

Carbon Transfer from the Host to Tuber melanosporum Mycorrhizas and Ascocarps Followed Using a 13C Pulse-Labeling Technique

François Le Tacon; Bernhard Zeller; Caroline Plain; Christian Hossann; Claude Bréchet; Christophe Robin

Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy) or from soil organic matter (saprotrophy). The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum) production and situated in the west part of the Vosges, France, was labeled with 13CO2. The transfer of 13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little 13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated 13C prior to ascocarp development. Then, the mycorrhizas transferred 13C to the ascocarps to provide constitutive carbon (1.7 mg of 13C per day). The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season) came from the host.


Oecologia | 2013

Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter?

Clément Stahl; Bruno Hérault; Vivien Rossi; Benoit Burban; Claude Bréchet; Damien Bonal

Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.


Annals of Forest Science | 2007

Do trees use reserve or newly assimilated carbon for their defense reactions? A 13C labeling approach with young Scots pines inoculated with a bark-beetle-associated fungus (Ophiostoma brunneo ciliatum)

Natacha Guérard; Pascale Maillard; Claude Bréchet; F. Lieutier; Erwin Dreyer

Three-year-old saplings of Pinus sylvestris L. were labeled with 13CO2 prior to inoculating the trunk with Ophiostoma brunneo ciliatum, a blue-staining fungus usually associated to Ips sexdentatus. During incubation, half the trees were submitted to a severe drought that decreased photosynthesis and natural 13C content in non-labeled saplings. A large 13C-excess was obtained in wood and phloem, especially in the fractions of soluble proteins, starch and soluble sugars of labeled saplings. Drought increased 13C-excess, due to reduced photosynthesis and smaller dilution of 13C by the addition of newly assimilated 12C. The induced-reaction zones in inoculated saplings displayed large total C (58 g 100 g−1) because of the accumulation of secondary metabolites. They also showed much larger 13C-excess than any other compartment: the contribution of stored C to the reaction zones was much higher than that of currently assimilated C. Moreover, drought lowered the contribution of the latter, as shown by the increase of 13C in the reaction zones. We conclude that stored C was readily mobilized for the construction of reaction tissues, and that the contribution of currently assimilated C was only minor.RésuméDe jeunes pins sylvestres (Pinus sylvestris L.) âgés de trois ans ont été marqués avec du 13CO2 puis inoculés dans le tronc avec Ophiostoma brunneo ciliatum, un champignon habituellement associé au scolyte Ips sexdentatus. Pendant l’incubation, la moitié des arbres a été soumise à une sécheresse sévère qui a fortement réduit la photosynthèse et l’abondance naturelle en 13C des individus non marqués. Un fort excès en 13C a été détecté dans le bois et le phloème ainsi que dans les protéines solubles, l’amidon et les sucres solubles des individus marqués. La sécheresse a amplifié cet excès, du fait d’une photosynthèse réduite et donc d’une moindre dilution du 13C par du 12C récemment assimilé. Les zones de réaction induite autour des points d’inoculation présentaient de fortes teneurs en C (58 g 100 g−1), du fait de l’accumulation massive de métabolites secondaires. Elles présentaient également un excès de 13C plus marqué que n’importe quel autre tissu : ces zones de réaction étaient donc essentiellement constituées à partir de C provenant des réserves avec une faible contribution de C récemment assimilé. De plus, la sécheresse a augmenté la contribution du C de réserve, comme le montre l’augmentation de l’excès de 13C dans les zones de réaction.


Annals of Forest Science | 2007

The successional status of tropical rainforest tree species is associated with differences in leaf carbon isotope discrimination and functional traits

Damien Bonal; Céline Born; Claude Bréchet; Sabrina Coste; Eric Marcon; Jean-Christophe Roggy; Jean-Marc Guehl

We characterised the among species variability in leaf gas exchange and morphological traits under controlled conditions of seedlings of 22 tropical rainforest canopy species to understand the origin of the variability in leaf carbon isotope discrimination (Δ) among species with different growth and dynamic characteristics (successional gradient). Our results first suggest that these species pursue a consistent strategy in terms of Δ throughout their ontogeny (juveniles grown here versus canopy adult trees from the natural forest). Second, leaf Δ was negatively correlated with WUE and N, and positively correlated with gs, but among species differences in Δ were mainly explained by differences in WUE. Finally, species belonging to different successional groups display distinct leaf functional and morphological traits. We confirmed that fast growing early successional species maximise carbon assimilation with high stomatal conductance. In contrast, fast and slow growing late successional species are both characterised by low carbon assimilation values, but by distinct stomatal conductance and leaf morphological features. Along the successional gradient, these differences result in much lower Δ for the intermediate species (i.e. fast growing late successional) as compared to the two other groups.RésuméNous avons caractérisé la variabilité interspécifique des échanges gazeux et des traits morphologiques foliaires en conditions environnementales contrôlées de jeunes plants de 22 espèces d’arbres de la canopée en forêt tropicale humide afin de comprendre l’origine de la variabilité de la discrimination isotopique du carbone foliaire (Δ) observée entre ces espèces présentant des caractéristiques de croissance et de dynamique distinctes (groupes successionnels). Nous montrons premièrement que les espèces tropicales possèdent une stratégie très conservée de Δ au cours de leur ontogénie (juvéniles élevés ici versus arbres adultes de la canopée en forêt naturelle). Deuxièmement, Δ était négativement corrélée à WUE et N, et positivement à gs, mais les différences de Δ entre espèces sont principalement expliquées par des différences de WUE. Enfin, nous montrons que les espèces appartenant à des groupes successionnels distincts présentent des traits fonctionnels et morphologiques foliaires distincts. Nous confirmons que les espèces à croissance rapide qui s’installent en premier au cours de la succession écologique (FE) maximisent A avec de fortes conductances stomatiques. Les espèces climax (qui s’installent en second dans la succession écologique), à croissance rapide (FL) ou à croissance faible (SL), présentent des valeurs de A identiques, mais des valeurs de gs ainsi que des caractéristiques morphologiques foliaires distinctes. Dans la succession écologique, ces différences se traduisent par des valeurs de Δ nettement plus faibles pour les espèces intermédiaires (c’est-à-dire les espèces climax à croissance rapide) par rapport aux deux autres groupes.


Plant and Soil | 2015

Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays

François Le Tacon; Bernhard Zeller; Caroline Plain; Christian Hossann; Claude Bréchet; Francis Martin; Annegret Kohler; Jean Villerd; Christophe Robin

Background and aimsWe previously showed by 13CO2 host labelling that almost all of the constitutive carbon allocated to the truffles originated from the host. The objective of this present work was to determine the putative capacity of T. melanosporum ectomycorrhizas and ascocarps to use soil carbon and to uptake or assimilate soil nitrate.MethodsThe current investigation involved 13C and 15N soil labelling by incorporating labelled leaf litter and expression of genes involved in carbon and nitrogen metabolism in ascocarps and ectomycorrhizas.ResultsThe ascocarps harvested in the labelled plots were highly enriched in 15N but were almost never enriched in 13C. The main source of soil mineral nitrogen was nitrate. A nitrate transporter, one nitrate reductase and a nitrite reductase were well expressed in ectomycorrhizas. Several genes involved in aminoacid synthesis or in transamination processes were also well expressed in ectomycorrhizas. No nitrate transporter was expressed in ascocarps where the CAZyme genes upregulated were mainly Glycosyltransferases involved in saccharide transfer.ConclusionAscocarps did not exhibit saprotrophic capacity for C, supporting previous results from 13CO2 host labelling showing that C is provided by the host tree. The 15N present in the ascocarps after soil labelling is supplied as ammonium or aminoacids by the ectomycorrhizas, which are able to uptake, reduce and metabolize nitrate.


Trees-structure and Function | 1995

Micronutrient composition of xylem sap and needles as a result of P-fertilization in maritime pine

Etienne Saur; Claude Bréchet; C. Lambrot; Pierre Masson

Xylem sap and foliar compositions (P, Cu, Zn, Mn) were examined over 4 months in control and P-fertilized maritime pine in a 7-year-old plantation. The absorption of copper, zinc, and boron appears to be reduced by phosphate fertilization. Manganese concentrations are positively related to P-supply increase. Foliar analysis and sap provides the same type of information in terms of antagonism or synergism between elements but the response to treatment is more often significant with sap throughout the seasons and is completely non-existent on a single classical autumn diagnosis with foliar concentration (i.e. Zn and Cu). In consequence foliar analysis is not sensitive enough for copper or zinc deficiency diagnoses in young plantations where nutritional growth disorders appear in a short period of spring, and xylem chemistry appears to be a convenient tool in monitoring micronutrient disorders in pine plantations.


Journal of Animal Science | 2015

In vivo prediction of goat kids body composition from the deuterium oxide dilution space determined by isotope-ratio mass spectrometry.

Sylvain Lerch; Marie-Laure Lastel; Christine Grandclaudon; Claude Bréchet; Guido Rychen; Cyril Feidt

Deuterium oxide dilution space (DOS) determination is one of the most accurate methods for in vivo estimation of ruminant body composition. However, the time-consuming vacuum sublimation of blood preceding infrared spectroscopy analysis, which is traditionally used to determine deuterium oxide (DO) concentration, limits its current use. The use of isotope-ratio mass spectrometry (IRMS) to determine the deuterium enrichment and thus quantify DO in plasma could counteract this limitation by reducing the sample preparation for plasma deproteinisation through centrifugal filters. The aim of this study was to validate the DOS technique using IRMS in growing goat kids to establish in vivo prediction equations of body composition. Seventeen weaned male Alpine goat kids (8.6 wk old) received a hay-based diet supplemented with 2 types of concentrates providing medium ( = 9) or high ( = 8) energy levels. Kids were slaughtered at 14.0 ( = 1, medium-energy diet), 17.2 ( = 4, medium-energy diet, and = 4, high-energy diet), or 21.2 wk of age ( = 4, medium-energy diet, and = 4, high-energy diet). Two days before slaughter, DOS was determined after an intravenous injection of 0.2 g DO/kg body mass (BM) and the resulting study of DO dilution kinetics from 4 plasma samples (+5, +7, +29, and +31 h after injection). The deuterium enrichment was analyzed by IRMS. After slaughter, the gut contents were discarded, the empty body (EB) was minced, and EB water, lipid, protein, ash, and energy contents were measured by chemical analyses. Prediction equations for body components measured postmortem were computed from in vivo BM and DOS. The lack of postmortem variation of fat-free EB composition was confirmed (mean of 75.3% [SD 0.6] of water), and the proportion of lipids in the EB tended ( = 0.06) to be greater for the high-energy diet (13.1%) than for the medium-energy diet (11.1%). There was a close negative relationship (residual CV [rCV] = 3.9%, = 0.957) between EB water and lipid content, whereas DOS was closely related to total body water (rCV = 2.9%, = 0.944) but DOS overestimated it by 5.8%. Adding DOS to BM improved the in vivo predictions of EB lipid and energy content (rCV = 13.1% and rCV = 7.9%, respectively) but not those of protein or ash. Accuracy of the obtained prediction equations was similar to those reported in studies determining DOS by infrared spectroscopy. Therefore, the use of IRMS to quantify DOS provides a highly accurate measure of the in vivo body composition in goat kids.


Environmental Microbiology | 2018

First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass: Do ectomycorrhizal fungi degrade brown rot fungi?

Emila Akroume; François Maillard; Cyrille Bach; Christian Hossann; Claude Bréchet; Nicolas Angeli; Bernhard Zeller; Laurent Saint-André; Marc Buée

Fungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P. involutus in the presence of labelled Postia necromass (15 N/13 C) as nutrient source, and a monoxenic mycorrhized pine experiment composed of labelled Postia necromass and P. involutus culture in interaction with pine seedlings. The isotopic labelling was measured in both experiments. In pure culture, P. involutus was able to mobilize N, but C as well, from the Postia necromass. In the symbiotic interaction experiment, we measured high 15 N enrichments in all plant and fungal compartments. Interestingly, 13 C remains mainly in the mycelium and mycorrhizas, demonstrating that the EM fungus transferred essentially N from the necromass to the tree. These observations reveal that fungal organic matter could represent a significant N source for EM fungi and trees, but also a C source for mycorrhizal fungi, including in symbiotic lifestyle.


New Phytologist | 2006

Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides×Populus nigra

Romain Monclus; Erwin Dreyer; Marc Villar; Francis Delmotte; Didier Delay; Jean-Michel Petit; Cécile Barbaroux; Didier Le Thiec; Claude Bréchet; Franck Brignolas


New Phytologist | 2005

Productivity, leaf traits and carbon isotope discrimination in 29 Populus deltoides × P. nigra clones

Romain Monclus; Erwin Dreyer; Francis Delmotte; Marc Villar; Didier Delay; Eric Boudouresque; Jean-Michel Petit; Nicolas Marron; Claude Bréchet; Franck Brignolas

Collaboration


Dive into the Claude Bréchet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bernhard Zeller

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Damien Bonal

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Marc Guehl

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Bernard Longdoz

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge