Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Collet is active.

Publication


Featured researches published by Claude Collet.


PLOS ONE | 2015

A Locomotor Deficit Induced by Sublethal Doses of Pyrethroid and Neonicotinoid Insecticides in the Honeybee Apis mellifera.

Mercedes Charreton; Axel Decourtye; Mickaël Henry; Guy Rodet; Jean-Christophe Sandoz; Pierre Charnet; Claude Collet

The toxicity of pesticides used in agriculture towards non-targeted organisms and especially pollinators has recently drawn the attention from a broad scientific community. Increased honeybee mortality observed worldwide certainly contributes to this interest. The potential role of several neurotoxic insecticides in triggering or potentiating honeybee mortality was considered, in particular phenylpyrazoles and neonicotinoids, given that they are widely used and highly toxic for insects. Along with their ability to kill insects at lethal doses, they can compromise survival at sublethal doses by producing subtle deleterious effects. In this study, we compared the bee’s locomotor ability, which is crucial for many tasks within the hive (e.g. cleaning brood cells, feeding larvae…), before and after an acute sublethal exposure to one insecticide belonging to the two insecticide classes, fipronil and thiamethoxam. Additionally, we examined the locomotor ability after exposure to pyrethroids, an older chemical insecticide class still widely used and known to be highly toxic to bees as well. Our study focused on young bees (day 1 after emergence) since (i) few studies are available on locomotion at this stage and (ii) in recent years, pesticides have been reported to accumulate in different hive matrices, where young bees undergo their early development. At sublethal doses (SLD48h, i.e. causing no mortality at 48h), three pyrethroids, namely cypermethrin (2.5 ng/bee), tetramethrin (70 ng/bee), tau-fluvalinate (33 ng/bee) and the neonicotinoid thiamethoxam (3.8 ng/bee) caused a locomotor deficit in honeybees. While the SLD48h of fipronil (a phenylpyrazole, 0.5 ng/bee) had no measurable effect on locomotion, we observed high mortality several days after exposure, an effect that was not observed with the other insecticides. Although locomotor deficits observed in the sublethal range of pyrethroids and thiamethoxam would suggest deleterious effects in the field, the case of fipronil demonstrates that toxicity evaluation requires information on multiple endpoints (e.g. long term survival) to fully address pesticides risks for honeybees. Pyrethroid-induced locomotor deficits are discussed in light of recent advances regarding their mode of action on honeybee ion channels and current structure-function studies.


Neurotoxicology | 2011

A use-dependent sodium current modification induced by type I pyrethroid insecticides in honeybee antennal olfactory receptor neurons

Aklesso Kadala; Mercedes Charreton; Ingrid Jakob; Yves Le Conte; Claude Collet

We studied the mode of action of type I pyrethroids on the voltage-dependent sodium current from honeybee olfactory receptor neurons (ORNs), whose proper function in antenna is crucial for interindividual communication in this species. Under voltage-clamp, tetramethrin and permethrin induce a long lasting TTX-sensitive tail current upon repolarization, which is the hallmark of an abnormal prolongation of the open channel configuration. Permethrin and tetramethrin also slow down the sodium current fast inactivation. Tetramethrin and permethrin both bind to the closed state of the channel as suggested by the presence of an obvious tail current after the first single depolarization applied in the presence of either compounds. Moreover, at first sight, channel opening seems to promote tetramethrin and permethrin binding as evidenced by the progressive tail current summation along with trains of stimulations, tetramethrin being more potent at modifying channels than permethrin. However, a use-dependent increase in the sodium peak current along with stimulations suggests that the tail current accumulation could also be a consequence of progressively unmasked silent channels. Experiments with the sea anemone toxin ATX-II that suppresses sodium channels fast inactivation are consistent with the hypothesis that these silent channels are either in an inactivated state at rest, or that they normally inactivate before they open so that they do not participate to the control sodium current. In honeybee ORNs, three processes lead to a use-dependent pyrethroid-induced tail current accumulation: (i) a recruitment of silent channels that produces an increase in the peak sodium current, (ii) a slowing down of the sodium current inactivation produced by prolongation of channels opening and (iii) a typical deceleration in current deactivation. The use-dependent recruitment of silent sodium channels in honeybee ORNs makes pyrethroids more potent at modifying neuronal excitability.


Journal of Insect Physiology | 2017

Stress response in honeybees is associated with changes in task-related physiology and energetic metabolism

Célia Bordier; Séverine Suchail; Maryline Pioz; Jean Marc Devaud; Claude Collet; Mercedes Charreton; Yves Le Conte; Cédric Alaux

In a rapidly changing environment, honeybee colonies are increasingly exposed to diverse sources of stress (e.g., new parasites, pesticides, climate warming), which represent a challenge to individual and social homeostasis. However, bee physiological responses to stress remain poorly understood. We therefore exposed bees specialised in different tasks (nurses, guards and foragers) to ancient (immune and heat stress) or historically more recent sources of stress (pesticides), and we determined changes in the expression of genes linked to behavioural maturation (vitellogenin - vg and juvenile hormone esterase - jhe) as well as in energetic metabolism (glycogen level, expression level of the receptor to the adipokinetic hormone - akhr, and endothermic performance). While acute exposure to sublethal doses of two pesticides did not affect vg and jhe expression, immune and heat challenges caused a decrease and increase in both genes, respectively, suggesting that bees had responded to ecologically relevant stressors. Since vg and jhe are expressed to a higher level in nurses than in foragers, it is reasonable to assume that an immune challenge stimulated behavioural maturation to decrease potential contamination risk and that a heat challenge promoted a nurse profile for brood thermoregulation. All behavioural castes responded in the same way. Though endothermic performances did not change upon stress exposure, the akhr level dropped in immune and heat-challenged individuals. Similarly, the abdomen glycogen level tended to decline in immune-challenged bees. Altogether, these results suggest that bee responses are stress specific and adaptive but that they tend to entail a reduction of energetic metabolism that needs to be studied on a longer timescale.


Methods of Molecular Biology | 2007

Whole-Cell Voltage Clamp on Skeletal Muscle Fibers With the Silicone-Clamp Technique

Romain Lefebvre; Sandrine Pouvreau; Claude Collet; Bruno Allard; Vincent Jacquemond

Control of membrane voltage and membrane current measurements are of strong interest for the study of numerous aspects of skeletal muscle physiology and pathophysiology. The silicone-clamp technique makes use of a conventional patch-clamp apparatus to achieve whole-cell voltage clamp of a restricted portion of a fully differentiated adult skeletal muscle fiber. The major part of an isolated muscle fiber is insulated from the extracellular medium with silicone grease, and the tip of a single microelectrode connected to the amplifier is then inserted within the fiber through the silicone layer. This method represents an alternative to the traditional vaseline-gap isolation and two or three microelectrode voltage-clamp techniques. This chapter reviews the main benefits of the silicone-clamp technique and provides detailed insights into its practical implementation.


The Journal of General Physiology | 2016

Biophysical characterization of the honeybee DSC1 orthologue reveals a novel voltage-dependent Ca2+ channel subfamily: CaV4

Pascal Gosselin-Badaroudine; Adrien Moreau; Louis Simard; Thierry Cens; Matthieu Rousset; Claude Collet; Pierre Charnet; Mohamed Chahine

Insect DSC1 channels have sequences that are intermediate between voltage-gated Na+ and Ca2+ channels but have hitherto been classified as the former. Gosselin-Badaroudine et al. clone and characterize honeybee DSC1, revealing high selectivity for Ca2+ and suggesting reclassification of DSC1 homologues as Ca2+ channels.


Scientific Reports | 2015

Characterization of the honeybee AmNaV1 channel and tools to assess the toxicity of insecticides.

Pascal Gosselin-Badaroudine; Adrien Moreau; Lucie Delemotte; Thierry Cens; Claude Collet; Matthieu Rousset; Pierre Charnet; Michael L. Klein; Mohamed Chahine

Pollination is important for both agriculture and biodiversity. For a significant number of plants, this process is highly, and sometimes exclusively, dependent on the pollination activity of honeybees. The large numbers of honeybee colony losses reported in recent years have been attributed to colony collapse disorder. Various hypotheses, including pesticide overuse, have been suggested to explain the disorder. Using the Xenopus oocytes expression system and two microelectrode voltage-clamp, we report the functional expression and the molecular, biophysical, and pharmacological characterization of the western honeybee’s sodium channel (Apis Mellifera NaV1). The NaV1 channel is the primary target for pyrethroid insecticides in insect pests. We further report that the honeybee’s channel is also sensitive to permethrin and fenvalerate, respectively type I and type II pyrethroid insecticides. Molecular docking of these insecticides revealed a binding site that is similar to sites previously identified in other insects. We describe in vitro and in silico tools that can be used to test chemical compounds. Our findings could be used to assess the risks that current and next generation pesticides pose to honeybee populations.


PLOS ONE | 2014

Pyrethroids Differentially Alter Voltage-Gated Sodium Channels from the Honeybee Central Olfactory Neurons

Aklesso Kadala; Mercedes Charreton; Ingrid Jakob; Thierry Cens; Matthieu Rousset; Mohamed Chahine; Yves Le Conte; Pierre Charnet; Claude Collet

The sensitivity of neurons from the honey bee olfactory system to pyrethroid insecticides was studied using the patch-clamp technique on central ‘antennal lobe neurons’ (ALNs) in cell culture. In these neurons, the voltage-dependent sodium currents are characterized by negative potential for activation, fast kinetics of activation and inactivation, and the presence of cumulative inactivation during train of depolarizations. Perfusion of pyrethroids on these ALN neurons submitted to repetitive stimulations induced (1) an acceleration of cumulative inactivation, and (2) a marked slowing of the tail current recorded upon repolarization. Cypermethrin and permethrin accelerated cumulative inactivation of the sodium current peak in a similar manner and tetramethrin was even more effective. The slow-down of channel deactivation was markedly dependent on the type of pyrethroid. With cypermethrin, a progressive increase of the tail current amplitude along with successive stimulations reveals a traditionally described use-dependent recruitment of modified sodium channels. However, an unexpected decrease in this tail current was revealed with tetramethrin. If one considers the calculated percentage of modified channels as an index of pyrethroids effects, ALNs are significantly more susceptible to tetramethrin than to permethrin or cypermethrin for a single depolarization, but this difference attenuates with repetitive activity. Further comparison with peripheral neurons from antennae suggest that these modifications are neuron type specific. Modeling the sodium channel as a multi-state channel with fast and slow inactivation allows to underline the effects of pyrethroids on a set of rate constants connecting open and inactivated conformations, and give some insights to their specificity. Altogether, our results revealed a differential sensitivity of central olfactory neurons to pyrethroids that emphasize the ability for these compounds to impair detection and processing of information at several levels of the bees olfactory pathway.


Pflügers Archiv: European Journal of Physiology | 2013

Characterization of the first honeybee Ca2+ channel subunit reveals two novel species- and splicing-specific modes of regulation of channel inactivation

Thierry Cens; Matthieu Rousset; Claude Collet; Valérie Raymond; Fabien Démares; Annabelle Quintavalle; Michel Bellis; Yves Le Conte; Mohamed Chahine; Pierre Charnet

The honeybee is a model system to study learning and memory, and Ca2+ signals play a key role in these processes. We have cloned, expressed, and characterized the first honeybee Ca2+ channel subunit. We identified two splice variants of the Apis CaVβ Ca2+ channel subunit (Am-CaVβ) and demonstrated expression in muscle and neurons. Although AmCaVβ shares with vertebrate CaVβ subunits the SH3 and GK domains, it beholds a unique N terminus that is alternatively spliced in the first exon to produce a long (a) and short (b) variant. When expressed with the CaV2 channels both, AmCaVβa and AmCaVβb, increase current amplitude, shift the voltage-sensitivity of the channel, and slow channel inactivation as the vertebrate CaVβ2a subunit does. However, as opposed to CaVβ2a, slow inactivation induced by Am-CaVβa was insensitive to palmitoylation but displayed a unique PI3K sensitivity. Inactivation produced by the b variant was PI3K-insensitive but staurosporine/H89-sensitive. Deletion of the first exon suppressed the sensitivity to PI3K inhibitors, staurosporine, or H89. Recording of Ba2+ currents in Apis neurons or muscle cells evidenced a sensitivity to PI3K inhibitors and H89, suggesting that both AmCaVβ variants may be important to couple cell signaling to Ca2+ entry in vivo. Functional interactions with phospho-inositide and identification of phosphorylation sites in AmCaVβa and AmCaVβb N termini, respectively, suggest that AmCaVβ splicing promoted two novel and alternative modes of regulation of channel activity with specific signaling pathways. This is the first description of a splicing-dependent kinase switch in the regulation of Ca2+ channel activity by CaVβ subunit.


Insect Biochemistry and Molecular Biology | 2015

Molecular characterization and functional expression of the Apis mellifera voltage-dependent Ca2+ channels.

Thierry Cens; Matthieu Rousset; Claude Collet; Mercedes Charreton; Lionel Garnery; Yves Le Conte; Mohamed Chahine; Jean-Christophe Sandoz; Pierre Charnet

Voltage-gated Ca(2+) channels allow the influx of Ca(2+) ions from the extracellular space upon membrane depolarization and thus serve as a transducer between membrane potential and cellular events initiated by Ca(2+) transients. Most insects are predicted to possess three genes encoding Cavα, the main subunit of Ca(2+) channels, and several genes encoding the two auxiliary subunits, Cavβ and Cavα2δ; however very few of these genes have been cloned so far. Here, we cloned three full-length cDNAs encoding the three Cavα subunits (AmelCav1a, AmelCav2a and AmelCav3a), a cDNA encoding a novel variant of the Cavβ subunit (AmelCavβc), and three full-length cDNAs encoding three Cavα2δ subunits (AmelCavα2δ1 to 3) of the honeybee Apis mellifera. We identified several alternative or mutually exclusive exons in the sequence of the AmelCav2 and AmelCav3 genes. Moreover, we detected a stretch of glutamine residues in the C-terminus of the AmelCav1 subunit that is reminiscent of the motif found in the human Cav2.1 subunit of patients with Spinocerebellar Ataxia type 6. All these subunits contain structural domains that have been identified as functionally important in their mammalian homologues. For the first time, we could express three insect Cavα subunits in Xenopus oocytes and we show that AmelCav1a, 2a and 3a form Ca(2+) channels with distinctive properties. Notably, the co-expression of AmelCav1a or AmelCav2a with AmelCavβc and AmCavα2δ1 produces High Voltage-Activated Ca(2+) channels. On the other hand, expression of AmelCav3a alone leads to Low Voltage-Activated Ca(2+) channels.


Scientific Reports | 2017

Honeybee locomotion is impaired by Am-CaV3 low voltage-activated Ca(2+) channel antagonist.

Matthieu Rousset; Claude Collet; Thierry Cens; F Bastin; Valérie Raymond-Delpech; I Massou; Claudine Menard; J-B Thibaud; Mercedes Charreton; Michel Vignes; Mohamed Chahine; Jean-Christophe Sandoz; Pierre Charnet

Voltage‐gated Ca2+ channels are key transducers of cellular excitability and participate in several crucial physiological responses. In vertebrates, 10 Ca2+ channel genes, grouped in 3 families (CaV1, CaV2 and CaV3), have been described and characterized. Insects possess only one member of each family. These genes have been isolated in a limited number of species and very few have been characterized although, in addition to their crucial role, they may represent a collateral target for neurotoxic insecticides. We have isolated the 3 genes coding for the 3 Ca2+ channels expressed in Apis mellifera. This work provides the first detailed characterization of the honeybee T-type CaV3 Ca2+ channel and demonstrates the low toxicity of inhibiting this channel. Comparing Ca2+ currents recorded in bee neurons and myocytes with Ca2+ currents recorded in Xenopus oocytes expressing the honeybee CaV3 gene suggests native expression in bee muscle cells only. High‐voltage activated Ca2+ channels could be recorded in the somata of different cultured bee neurons. These functional data were confirmed by in situ hybridization, immunolocalization and in vivo analysis of the effects of a CaV3 inhibitor. The biophysical and pharmacological characterization and the tissue distribution of CaV3 suggest a role in honeybee muscle function.

Collaboration


Dive into the Claude Collet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Charnet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Mercedes Charreton

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Matthieu Rousset

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Cens

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Yves Le Conte

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Matthieu Rousset

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Pierre Charnet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Thierry Cens

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Aklesso Kadala

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge