Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Fontaine is active.

Publication


Featured researches published by Claude Fontaine.


Nature | 2010

Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago

Abderrazak El Albani; Stefan Bengtson; Donald E. Canfield; Andrey Bekker; Roberto Macchiarelli; Arnaud Mazurier; Emma U. Hammarlund; Philippe Boulvais; Jean-Jacques Dupuy; Claude Fontaine; Franz T. Fürsich; François Gauthier-Lafaye; Philippe Janvier; Emmanuelle Javaux; Frantz Ossa Ossa; Anne-Catherine Pierson-Wickmann; Armelle Riboulleau; Paul Sardini; Daniel Vachard; Martin Whitehouse; Alain Meunier

The evidence for macroscopic life during the Palaeoproterozoic era (2.5–1.6 Gyr ago) is controversial. Except for the nearly 2-Gyr–old coil-shaped fossil Grypania spiralis, which may have been eukaryotic, evidence for morphological and taxonomic biodiversification of macroorganisms only occurs towards the beginning of the Mesoproterozoic era (1.6–1.0 Gyr). Here we report the discovery of centimetre-sized structures from the 2.1-Gyr-old black shales of the Palaeoproterozoic Francevillian B Formation in Gabon, which we interpret as highly organized and spatially discrete populations of colonial organisms. The structures are up to 12 cm in size and have characteristic shapes, with a simple but distinct ground pattern of flexible sheets and, usually, a permeating radial fabric. Geochemical analyses suggest that the sediments were deposited under an oxygenated water column. Carbon and sulphur isotopic data indicate that the structures were distinct biogenic objects, fossilized by pyritization early in the formation of the rock. The growth patterns deduced from the fossil morphologies suggest that the organisms showed cell-to-cell signalling and coordinated responses, as is commonly associated with multicellular organization. The Gabon fossils, occurring after the 2.45–2.32-Gyr increase in atmospheric oxygen concentration, may be seen as ancient representatives of multicellular life, which expanded so rapidly 1.5 Gyr later, in the Cambrian explosion.


PLOS ONE | 2014

The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity.

Abderrazak El Albani; Stefan Bengtson; Donald E. Canfield; Amelie Riboulleau; Claire Rollion Bard; Roberto Macchiarelli; Lauriss Ngombi Pemba; Emma U. Hammarlund; Alain Meunier; Idalina Moubiya Mouélé; Karim Benzerara; Sylvain Bernard; Philippe Boulvais; Marc Chaussidon; Christian Cesari; Claude Fontaine; Ernest Chi-Fru; Juan Manual Garcia Ruiz; François Gauthier-Lafaye; Arnaud Mazurier; Anne Catherine Pierson-Wickmann; Olivier J. Rouxel; Alain Trentesaux; Marco Vecoli; Gerard J M Versteegh; Lee White; Martin J. Whitehouse; Andrey Bekker

The Paleoproterozoic Era witnessed crucial steps in the evolution of Earths surface environments following the first appreciable rise of free atmospheric oxygen concentrations ∼2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.


Clays and Clay Minerals | 2005

Clay mineralogy and chemical composition of bentonites from the Gourougou volcanic massif (Northeast Morocco)

Mohamed Ddani; Alain Meunier; Mohamed Zahraoui; Daniel Beaufort; Mohamed El Wartiti; Claude Fontaine; B. Boukili; Benacer El Mahi

The Gourougou volcanic massif (northeastern Morocco) is actively prospected for bentonite deposits. Five bentonites originating from different environments were selected for the present study: hydrothermal alteration of obsidian perlite glass inside the volcanoes themselves (Providencia and Tribia deposits); alteration of pyroclastic flows in a marine shallow water to lagoonal lacustrine environment (Ibourhardayn deposit); ash falls in marine or lacustrine systems (Moulay Rachid and Melg el Ouidan (formerly Camp Berteau) deposits). All of these bentonites were probably formed from volcanic glass originating from a rhyolitic magma at different stages of differentiation as shown by slight variations of REE and incompatible element abundances. The crystal-chemical characteristics of the smectite vary according to alteration conditions: beidellite predominates in hydrothermal systems, whereas montmorillonite predominates in lagoonal and lacustrine environments, and mixed-layer beidellite-montmorillonite in the sea-water-altered pyroclastic flows. All these dioctahedral smectites exhibit a heterogeneous distribution of charge as shown by the presence of partially expandable (1 EG) or non- expandable (0 EG) layers in the K-saturation state. The proportion of the collapsed or partially expandable layers is not related to the average layer charge or to the cation exchange capacity. This militates for an overall heterogeneous charge distribution. Compared to other natural or experimental alteration systems of similar rhyolitic glass, the formation of beidellite or montmorillonite appears to be controlled by the amounts of Mg in the system.


Water Research | 2010

Formation of methyl iodide on a natural manganese oxide

Sebastien Allard; Hervé Gallard; Claude Fontaine; Jean-Philippe Croué

This paper demonstrates that manganese oxides can initiate the formation of methyl iodide, a volatile compound that participates to the input of iodine into the atmosphere. The formation of methyl iodide was investigated using a natural manganese oxide in batch experiments for different conditions and concentrations of iodide, natural organic matter (NOM) and manganese oxide. Methyl iodide was formed at concentrations <or=1 microg L(-1) for initial iodide concentrations ranging from 0.8 to 38.0 mg L(-1). The production of methyl iodide increased with increasing initial concentrations of iodide ion and Mn sand and when pH decreased from 7 to 5. The hydrophilic NOM isolate exhibited the lowest yield of methyl iodide whereas hydrophobic NOM isolates such as Suwannee River HPOA fraction produced the highest concentration of methyl iodide. The formation of methyl iodide could take place through the oxidation of NOM on manganese dioxide in the presence of iodide. However, the implication of elemental iodine cannot be excluded at acidic pH. Manganese oxides can then participate with ferric oxides to the formation of methyl iodide in soils and sediments. The formation of methyl iodide is unlikely in technical systems such as drinking water treatment i.e. for ppt levels of iodide and low contact times with manganese oxides.


Science of The Total Environment | 2017

Organic matter interactions with natural manganese oxide and synthetic birnessite

Sebastien Allard; Leonardo Gutierrez; Claude Fontaine; Jean-Philippe Croué; Hervé Gallard

Redox reactions of inorganic and organic contaminants on manganese oxides have been widely studied. However, these reactions are strongly affected by the presence of natural organic matter (NOM) at the surface of the manganese oxide. Interestingly, the mechanism behind NOM adsorption onto manganese oxides remains unclear. Therefore, in this study, the adsorption kinetics and equilibrium of different NOM isolates to synthetic manganese oxide (birnessite) and natural manganese oxide (Mn sand) were investigated. Natural manganese oxide is composed of both amorphous and well-crystallised Mn phases (i.e., lithiophorite, birnessite, and cryptomelane). NOM adsorption on both manganese oxides increased with decreasing pH (from pH7 to 5), in agreement with surface complexation and ligand exchange mechanisms. The presence of calcium enhanced the rate of NOM adsorption by decreasing the electrostatic repulsion between NOM and Mn sand. Also, the adsorption was limited by the diffusion of NOM macromolecules through the Mn sand pores. At equilibrium, a preferential adsorption of high molecular weight molecules enriched in aromatic moieties was observed for both the synthetic and natural manganese oxide. Hydrophobic interactions may explain the adsorption of organic matter on manganese oxides. The formation of low molecular weight UV absorbing molecules was detected with the synthetic birnessite, suggesting oxidation and reduction processes occurring during NOM adsorption. This study provides a deep insight for both environmental and engineered systems to better understand the impact of NOM adsorption on the biogeochemical cycle of manganese.


Plant and Soil | 2011

Fissure and mineral weathering impacts on heavy metal distribution in sludge-amended soil

D. Proust; Jacinthe Caillaud; Claude Fontaine; Michel Fialin; Christian Courbe; Nathalie Dauger

The purpose of this study was to follow the distribution and migration of the metallic trace elements (MTE) zinc (Zn), lead (Pb) and cadmium (Cd) in a sludge-amended soil, both at the metric scale of the bulk soil horizons and at the micrometric scale of mineral weathering microsites. In the soil scale approach, the MTE contents determined by ICP-AES and ICP-MS analyses in amended and control soil samples were compared through enrichment factor calculation to assess the extent to which spread MTE may have moved throughout the soil profile. In the mineral scale approach, the MTE were analysed on thin sections in specific weathering microsystems including (1) rock-forming minerals (amphiboles, biotites, plagioclases) and their specific weathering clay minerals; (2) weathering clayey plasma, which obliterates the original rock structure with newly-formed clay minerals; and (3) the fissural network with its clay minerals. The purpose of this mineralogical approach, using X-ray diffraction (XRD) for mineral identification and electron probe microanalyses (EPMA) for MTE analyses, was to determine where and at which concentrations spread MTE can concentrate within the soil and weathered rock. The chemical analyses of MTE in the bulk samples reveal strong Cd and Pb accumulation at the surface of the amended soil due to anthropic contamination. Cadmium undergoes a vertical migration in deeper soil horizons, whereas Zn and Pb do not show significative transfer within the amended soil. Accurate MTE analyses in weathering microsites indicate that, except in plagioclase microsites, (1) Zn and Cd accumulate in clay minerals from surface horizons and migrate downwards through the fissural system, and (2) Pb does not show any significant mobility throughout the amended soil. The MTE migration evidenced through the fissural system gives rise to two main environmental problems. Zn and Cd have the potential to move several meters deep along fissures in the soil profiles and may represent potential contaminants for unconfined aquifer. Secondly, because the plant root system grows preferentially along soil fissural pattern, it may adsorb MTE.


Ultrasonics Sonochemistry | 2016

Effect of low frequency ultrasound on the surface properties of natural aluminosilicates

Liudmila Novikova; Philippe Ayrault; Claude Fontaine; Gregory Chatel; François Jérôme; Larisa Belchinskaya

Structural and surface properties of different natural aluminosilicates (layered, chain and framework structural types) exposed of 20 kHz ultrasound irradiation (0-120 min) in aqueous and 35 wt%. aqueous H2O2 dispersions were studied by X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption-desorption, thermal analysis, and Fourier transform infrared spectroscopy (FTIR) techniques. It was confirmed that sonication caused slight changes in the structure of investigated minerals whereas their textural properties were significantly affected. The aqueous dispersions of montmorillonite (Mt), clinoptilolite (Zlt), glauconite (Glt) and palygorskite (Pal) were represented by several particles size fractions according to DLS-study. Ultrasound irradiation produced a decrease of the average particle diameter by 4-6 times in water and by 1.3-5 times in H2O2 dispersions except for Pal, which underwent strong agglomeration. A significant increase of total pore volume and pore diameter was observed for Glt sonicated in H2O2 dispersions whereas for Pal mainly micropore volume sharply increased in both aqueous and H2O2 dispersions.


Geochimica et Cosmochimica Acta | 2012

Partitioning of lithium between smectite and solution: An experimental approach

Alain Decarreau; Nathalie Vigier; Helena Pálková; Sabine Petit; Philippe Vieillard; Claude Fontaine


Chemical Geology | 2013

Exceptional preservation of expandable clay minerals in the ca. 2.1 Ga black shales of the Francevillian basin, Gabon and its implication for atmospheric oxygen accumulation

Frantz Ossa Ossa; Abderrazak El Albani; Axel Hofmann; Andrey Bekker; François Gauthier-Lafaye; Florent Pambo; Alain Meunier; Claude Fontaine; Philippe Boulvais; Anne-Catherine Pierson-Wickmann; Barbara Cavalazzi; Roberto Macchiarelli


Catena | 2013

Impacts of weathering and clay mineralogy on heavy metals sorption in sludge-amended soils

D. Proust; Claude Fontaine; N. Dauger

Collaboration


Dive into the Claude Fontaine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

François Gauthier-Lafaye

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrey Bekker

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge