Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Houdayer is active.

Publication


Featured researches published by Claude Houdayer.


Nature Genetics | 2002

Mutations in IRF6 cause Van der Woude and popliteal pterygium syndromes

Shinji Kondo; Brian C. Schutte; Rebecca Richardson; Bryan C. Bjork; Alexandra S. Knight; Yoriko Watanabe; Emma Howard; Renata de Lima; Sandra Daack-Hirsch; A. Sander; Donna M. McDonald-McGinn; Elaine H. Zackai; Edward J. Lammer; Arthur S. Aylsworth; Holly H. Ardinger; Andrew C. Lidral; Barbara R. Pober; Lina M. Moreno; Mauricio Arcos-Burgos; Consuelo Valencia; Claude Houdayer; Michel Bahuau; Danilo Moretti-Ferreira; Antonio Richieri-Costa; Michael J. Dixon; Jeffrey C. Murray

Interferon regulatory factor 6 (IRF6) belongs to a family of nine transcription factors that share a highly conserved helix–turn–helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-α and -β after viral infection, but the function of IRF6 is unknown. The gene encoding IRF6 is located in the critical region for the Van der Woude syndrome (VWS; OMIM 119300) locus at chromosome 1q32–q41 (refs 2,3). The disorder is an autosomal dominant form of cleft lip and palate with lip pits, and is the most common syndromic form of cleft lip or palate. Popliteal pterygium syndrome (PPS; OMIM 119500) is a disorder with a similar orofacial phenotype that also includes skin and genital anomalies. Phenotypic overlap and linkage data suggest that these two disorders are allelic. We found a nonsense mutation in IRF6 in the affected twin of a pair of monozygotic twins who were discordant for VWS. Subsequently, we identified mutations in IRF6 in 45 additional unrelated families affected with VWS and distinct mutations in 13 families affected with PPS. Expression analyses showed high levels of Irf6 mRNA along the medial edge of the fusing palate, tooth buds, hair follicles, genitalia and skin. Our observations demonstrate that haploinsufficiency of IRF6 disrupts orofacial development and are consistent with dominant-negative mutations disturbing development of the skin and genitalia.


American Journal of Human Genetics | 2008

Common Breast Cancer-Predisposition Alleles Are Associated with Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

Antonis C. Antoniou; Amanda B. Spurdle; Olga M. Sinilnikova; Sue Healey; Karen A. Pooley; Rita K. Schmutzler; Beatrix Versmold; Christoph Engel; Alfons Meindl; Norbert Arnold; Wera Hofmann; Christian Sutter; Dieter Niederacher; Helmut Deissler; Trinidad Caldés; Kati Kämpjärvi; Heli Nevanlinna; Jacques Simard; Jonathan Beesley; Xiaoqing Chen; Susan L. Neuhausen; Timothy R. Rebbeck; Theresa Wagner; Henry T. Lynch; Claudine Isaacs; Jeffrey N. Weitzel; Patricia A. Ganz; Mary B. Daly; Gail E. Tomlinson; Olufunmilayo I. Olopade

Germline mutations in BRCA1 and BRCA2 confer high risks of breast cancer. However, evidence suggests that these risks are modified by other genetic or environmental factors that cluster in families. A recent genome-wide association study has shown that common alleles at single nucleotide polymorphisms (SNPs) in FGFR2 (rs2981582), TNRC9 (rs3803662), and MAP3K1 (rs889312) are associated with increased breast cancer risks in the general population. To investigate whether these loci are also associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers, we genotyped these SNPs in a sample of 10,358 mutation carriers from 23 studies. The minor alleles of SNP rs2981582 and rs889312 were each associated with increased breast cancer risk in BRCA2 mutation carriers (per-allele hazard ratio [HR] = 1.32, 95% CI: 1.20-1.45, p(trend) = 1.7 x 10(-8) and HR = 1.12, 95% CI: 1.02-1.24, p(trend) = 0.02) but not in BRCA1 carriers. rs3803662 was associated with increased breast cancer risk in both BRCA1 and BRCA2 mutation carriers (per-allele HR = 1.13, 95% CI: 1.06-1.20, p(trend) = 5 x 10(-5) in BRCA1 and BRCA2 combined). These loci appear to interact multiplicatively on breast cancer risk in BRCA2 mutation carriers. The differences in the effects of the FGFR2 and MAP3K1 SNPs between BRCA1 and BRCA2 carriers point to differences in the biology of BRCA1 and BRCA2 breast cancer tumors and confirm the distinct nature of breast cancer in BRCA1 mutation carriers.


Cancer Research | 2012

Ploidy and Large-Scale Genomic Instability Consistently Identify Basal-like Breast Carcinomas with BRCA1/2 Inactivation

Tatiana Popova; Elodie Manié; Guillaume Rieunier; Virginie Caux-Moncoutier; Carole Tirapo; Thierry Dubois; Olivier Delattre; Brigitte Sigal-Zafrani; Marc A. Bollet; Michel Longy; Claude Houdayer; Xavier Sastre-Garau; Anne Vincent-Salomon; Dominique Stoppa-Lyonnet; Marc-Henri Stern

BRCA1 inactivation is a frequent event in basal-like breast carcinomas (BLC). However, BRCA1 can be inactivated by multiple mechanisms and determining its status is not a trivial issue. As an alternate approach, we profiled 65 BLC cases using single-nucleotide polymorphism arrays to define a signature of BRCA1-associated genomic instability. Large-scale state transitions (LST), defined as chromosomal break between adjacent regions of at least 10 Mb, were found to be a robust indicator of BRCA1 status in this setting. Two major ploidy-specific cutoffs in LST distributions were sufficient to distinguish highly rearranged BLCs with 85% of proven BRCA1-inactivated cases from less rearranged BLCs devoid of proven BRCA1-inactivated cases. The genomic signature we defined was validated in a second independent series of 55 primary BLC cases and 17 BLC-derived tumor cell lines. High numbers of LSTs resembling BRCA1-inactivated BLC were observed in 4 primary BLC cases and 2 BLC cell lines that harbored BRCA2 mutations. Overall, the genomic signature we defined predicted BRCA1/2 inactivation in BLCs with 100% sensitivity and 90% specificity (97% accuracy). This assay may ease the challenge of selecting patients for genetic testing or recruitment to clinical trials of novel emerging therapies that target DNA repair deficiencies in cancer.


Human Mutation | 2008

Evaluation of in silico splice tools for decision‐making in molecular diagnosis

Claude Houdayer; Catherine Dehainault; Christophe Mattler; Dorothée Michaux; Virginie Caux-Moncoutier; Sabine Pagès-Berhouet; Catherine Dubois d'Enghien; Anthony Laugé; Laurent Castera; Marion Gauthier-Villars; Dominique Stoppa-Lyonnet

It appears that all types of genomic nucleotide variations can be deleterious by affecting normal pre‐mRNA splicing via disruption/creation of splice site consensus sequences. As it is neither pertinent nor realistic to perform functional testing for all of these variants, it is important to identify those that could lead to a splice defect in order to restrict transcript analyses to the most appropriate cases. Web‐based tools designed to provide such predictions are available. We evaluated the performance of six of these tools (Splice Site Prediction by Neural Network [NNSplice], Splice‐Site Finder [SSF], MaxEntScan [MES], Automated Splice‐Site Analyses [ASSA], Exonic Splicing Enhancer [ESE] Finder, and Relative Enhancer and Silencer Classification by Unanimous Enrichment [RESCUE]‐ESE) using 39 unrelated retinoblastoma patients carrying different RB1 variants (31 intronic and eight exonic). These 39 patients were screened for abnormal splicing using puromycin‐treated cell lines and the results were compared to the predictions. As expected, 17 variants impacting canonical AG/GT splice sites were correctly predicted as deleterious. A total of 22 variations occurring at loosely defined positions (±60 nucleotides from an AG/GT site) led to a splice defect in 19 cases and 16 of them were classified as deleterious by at least one tool (84% sensitivity). In other words, three variants escaped in silico detection and the remaining three were correctly predicted as neutral. Overall our results suggest that a combination of complementary in silico tools is necessary to guide molecular geneticists (balance between the time and cost required by RNA analysis and the risk of missing a deleterious mutation) because the weaknesses of one in silico tool may be overcome by the results of another tool. Hum Mutat 29(7), 975–982, 2008.


American Journal of Medical Genetics Part A | 2004

Mutation of SFTPC in infantile pulmonary alveolar proteinosis with or without fibrosing lung disease

Mohammed Tredano; Matthias Griese; Frank Brasch; Silja Schumacher; Jacques de Blic; Stéphanie Marque; Claude Houdayer; Jacques Elion; Rémy Couderc; Michel Bahuau

Pulmonary surfactant protein C (SP‐C) is a highly hydrophobic peptide produced by type‐II alveolar cells through the processing of a high‐molecular weight precursor (pro‐SP‐C), that enhances surface tension and facilitates the recycling of pulmonary surfactant in vitro. Recently, two seemingly dominant‐negative mutations of the pro‐SP‐C‐encoding gene (SFTPC, MIM 178620), were reported in families with vertically‐inherited interstitial lung disease (Nogee et al. [2001: N Engl J Med 344:573–579]; Thomas et al. [2002: Am J Respir Crit Care Med 165:1322–1328]). We have examined the SP‐C protein and its precursor as well as the encoding gene, in a cohort of 34 sporadic or familial cases with unexplained respiratory distress (URD) in which surfactant protein B (SP‐B) deficiency related to SFTPB mutation had been ruled out. One patient with complete SP‐C deficiency had no detectable mutation of SFTPC. Of the 10 patients with abnormal pro‐SP‐C processing, as suggested from analysis of broncho‐alveolar lavage (BAL) fluid, two distinct heterozygous SFTPC missense mutations were identified. The first, g.1286T > C (p.I73T), was de novo and resulted in progressive respiratory failure with intra‐alveolar storage of a granular, protein‐ and lipid‐rich, periodic acid Schiff (PAS)‐positive material (pulmonary alveolar proteinosis (PAP)), and interstitial lung disease. The second, g.2125G > A (p.R167Q), was found in two PAP patients from the endogamous white settler population of Réunion Island in which URD has an unexpectedly high prevalence. Since this mutation was diagnosed in subjects from this subpopulation who did not have evidence for lung disease, we propose environmental exposures or modifier genes to play a role in the phenotype, as suggested from murine models lacking the SP‐C protein, although we cannot rule out a rare polymorphism, hitherto restricted to that subpopulation. Most remarkably, these observations extend the phenotypic spectrum related to SFTPC mutation from interstitial lung disease to PAP. Notably, the reported mutations do not appear to be dominant negatives. This article contains supplementary material, which may be viewed at the American Journal of Medical Genetics website at http://www.interscience.wiley.com/jpages/0148‐7299/suppmat/index.html.


Lancet Oncology | 2013

Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies.

Diane Rushlow; Berber M. Mol; Jennifer Y. Kennett; Stephanie Yee; Sanja Pajovic; Brigitte L. Thériault; Nadia L Prigoda-Lee; Clarellen Spencer; Helen Dimaras; Timothy W. Corson; Renee Pang; Christine Massey; Roseline Godbout; Zhe Jiang; Eldad Zacksenhaus; Katherine Paton; Annette C. Moll; Claude Houdayer; Anthony Raizis; William Halliday; Wan L. Lam; Paul C. Boutros; Dietmar R. Lohmann; Josephine C. Dorsman; Brenda L. Gallie

BACKGROUND Retinoblastoma is the childhood retinal cancer that defined tumour-suppressor genes. Previous work shows that mutation of both alleles of the RB1 retinoblastoma suppressor gene initiates disease. We aimed to characterise non-familial retinoblastoma tumours with no detectable RB1 mutations. METHODS Of 1068 unilateral non-familial retinoblastoma tumours, we compared those with no evidence of RB1 mutations (RB1(+/+)) with tumours carrying a mutation in both alleles (RB1(-/-)). We analysed genomic copy number, RB1 gene expression and protein function, retinal gene expression, histological features, and clinical data. FINDINGS No RB1 mutations (RB1(+/+)) were reported in 29 (2·7%) of 1068 unilateral retinoblastoma tumours. 15 of the 29 RB1(+/+) tumours had high-level MYCN oncogene amplification (28-121 copies; RB1(+/+)MYCN(A)), whereas none of 93 RB1(-/-) primary tumours tested showed MYCN amplification (p<0·0001). RB1(+/+)MYCN(A) tumours expressed functional RB1 protein, had fewer overall genomic copy-number changes in genes characteristic of retinoblastoma than did RB1(-/-) tumours, and showed distinct aggressive histological features. MYCN amplification was the sole copy-number change in one RB1(+/+)MYCN(A) retinoblastoma. One additional MYCN(A) tumour was discovered after the initial frequencies were determined, and this is included in further analyses. Median age at diagnosis of the 17 children with RB1(+/+)MYCN(A) tumours was 4·5 months (IQR 3·5-10), compared with 24 months (15-37) for 79 children with non-familial unilateral RB1(-/-) retinoblastoma. INTERPRETATION Amplification of the MYCN oncogene might initiate retinoblastoma in the presence of non-mutated RB1 genes. These unilateral RB1(+/+)MYCN(A) retinoblastomas are characterised by distinct histological features, only a few of the genomic copy-number changes that are characteristic of retinoblastoma, and very early age of diagnosis. FUNDING National Cancer Institute-National Institutes of Health, Canadian Institutes of Health Research, German Research Foundation, Canadian Retinoblastoma Society, Hyland Foundation, Toronto Netralaya and Doctors Lions Clubs, Ontario Ministry of Health and Long Term Care, UK-Essen, and Foundations Avanti-STR and KiKa.


Human Mutation | 2012

Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants.

Claude Houdayer; Virginie Caux-Moncoutier; Sophie Krieger; Michel Barrois; Françoise Bonnet; Violaine Bourdon; Myriam Bronner; Monique Buisson; Florence Coulet; Pascaline Gaildrat; Cédrick Lefol; Mélanie Léoné; Sylvie Mazoyer; Danielle Muller; Audrey Remenieras; Françoise Révillion; Etienne Rouleau; Joanna Sokolowska; Jean-Philippe Vert; Rosette Lidereau; Florent Soubrier; Hagay Sobol; Nicolas Sévenet; Brigitte Bressac-de Paillerets; Agnès Hardouin; Mario Tosi; Olga M. Sinilnikova; Dominique Stoppa-Lyonnet

Assessing the impact of variants of unknown significance (VUS) on splicing is a key issue in molecular diagnosis. This impact can be predicted by in silico tools, but proper evaluation and user guidelines are lacking. To fill this gap, we embarked upon the largest BRCA1 and BRCA2 splice study to date by testing 272 VUSs (327 analyses) within the BRCA splice network of Unicancer. All these VUSs were analyzed by using six tools (splice site prediction by neural network, splice site finder (SSF), MaxEntScan (MES), ESE finder, relative enhancer and silencer classification by unanimous enrichment, and human splicing finder) and the predictions obtained were compared with transcript analysis results. Combining MES and SSF gave 96% sensitivity and 83% specificity for VUSs occurring in the vicinity of consensus splice sites, that is, the surrounding 11 and 14 bases for the 5′ and 3′ sites, respectively. This study was also an opportunity to define guidelines for transcript analysis along with a tentative classification of splice variants. The guidelines drawn from this large series should be useful for the whole community, particularly in the context of growing sequencing capacities that require robust pipelines for variant interpretation. Hum Mutat 33:1228–1238, 2012.


American Journal of Human Genetics | 2006

Contiguous Gene Deletion within Chromosome Arm 10q Is Associated with Juvenile Polyposis of Infancy, Reflecting Cooperation between the BMPR1A and PTEN Tumor-Suppressor Genes

Capucine Delnatte; Damien Sanlaville; Jean Francois Mougenot; Joris Vermeesch; Claude Houdayer; Marie Christine De Blois; David Geneviève; Olivier Goulet; Jean Pierre Fryns; Francis Jaubert; Michel Vekemans; Stanislas Lyonnet; Serge Romana; Charis Eng; Dominique Stoppa-Lyonnet

We describe four unrelated children who were referred to two tertiary referral medical genetics units between 1991 and 2005 and who are affected with juvenile polyposis of infancy. We show that these children are heterozygous for a germline deletion encompassing two contiguous genes, PTEN and BMPR1A. We hypothesize that juvenile polyposis of infancy is caused by the deletion of these two genes and that the severity of the disease reflects cooperation between these two tumor-suppressor genes.


BMC Cancer | 2008

Genome profiling of chronic myelomonocytic leukemia: frequent alterations of RAS and RUNX1 genes

Véronique Gelsi-Boyer; Virginie Trouplin; José Adélaïde; Nicola Aceto; Virginie Rémy; Stephane Pinson; Claude Houdayer; Christine Arnoulet; Danielle Sainty; Mohamed Bentires-Alj; Sylviane Olschwang; Norbert Vey; Marie-Joelle Mozziconacci; Daniel Birnbaum; Max Chaffanet

BackgroundChronic myelomonocytic leukemia (CMML) is a hematological disease close to, but separate from both myeloproliferative disorders (MPD) and myelodysplastic syndromes and may show either myeloproliferative (MP-CMML) or myelodysplastic (MD-CMML) features. Not much is known about the molecular biology of this disease.MethodsWe studied a series of 30 CMML samples (13 MP- and 11 MD-CMMLs, and 6 acutely transformed cases) from 29 patients by using Agilent high density array-comparative genomic hybridization (aCGH) and sequencing of 12 candidate genes.ResultsTwo-thirds of samples did not show any obvious alteration of aCGH profiles. In one-third we observed chromosome abnormalities (e.g. trisomy 8, del20q) and gain or loss of genes (e.g. NF1, RB1 and CDK6). RAS mutations were detected in 4 cases (including an uncommon codon 146 mutation in KRAS) and PTPN11 mutations in 3 cases. We detected 11 RUNX1 alterations (9 mutations and 2 rearrangements). The rearrangements were a new, cryptic inversion of chromosomal region 21q21-22 leading to break and fusion of RUNX1 to USP16. RAS and RUNX1 alterations were not mutually exclusive. RAS pathway mutations occurred in MP-CMMLs (~46%) but not in MD-CMMLs. RUNX1 alterations (mutations and cryptic rearrangement) occurred in both MP and MD classes (~38%).ConclusionWe detected RAS pathway mutations and RUNX1 alterations. The latter included a new cryptic USP16-RUNX1 fusion. In some samples, two alterations coexisted already at this early chronic stage.


Human Molecular Genetics | 2010

Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers.

Xianshu Wang; V. Shane Pankratz; Zachary S. Fredericksen; Robert F. Tarrell; Mary Karaus; Lesley McGuffog; Paul D.P. Pharaoh; Bruce A.J. Ponder; Alison M. Dunning; Susan Peock; Margaret Cook; Clare Oliver; Debra Frost; Olga M. Sinilnikova; Dominique Stoppa-Lyonnet; Sylvie Mazoyer; Claude Houdayer; Frans B. L. Hogervorst; Maartje J. Hooning; Marjolijn J. L. Ligtenberg; Amanda B. Spurdle; Georgia Chenevix-Trench; Rita K. Schmutzler; Barbara Wappenschmidt; Christoph Engel; Alfons Meindl; Susan M. Domchek; Katherine L. Nathanson; Timothy R. Rebbeck; Christian F. Singer

Recent studies have identified single nucleotide polymorphisms (SNPs) that significantly modify breast cancer risk in BRCA1 and BRCA2 mutation carriers. Since these risk modifiers were originally identified as genetic risk factors for breast cancer in genome-wide association studies (GWASs), additional risk modifiers for BRCA1 and BRCA2 may be identified from promising signals discovered in breast cancer GWAS. A total of 350 SNPs identified as candidate breast cancer risk factors (P < 1 x 10(-3)) in two breast cancer GWAS studies were genotyped in 3451 BRCA1 and 2006 BRCA2 mutation carriers from nine centers. Associations with breast cancer risk were assessed using Cox models weighted for penetrance. Eight SNPs in BRCA1 carriers and 12 SNPs in BRCA2 carriers, representing an enrichment over the number expected, were significantly associated with breast cancer risk (P(trend) < 0.01). The minor alleles of rs6138178 in SNRPB and rs6602595 in CAMK1D displayed the strongest associations in BRCA1 carriers (HR = 0.78, 95% CI: 0.69-0.90, P(trend) = 3.6 x 10(-4) and HR = 1.25, 95% CI: 1.10-1.41, P(trend) = 4.2 x 10(-4)), whereas rs9393597 in LOC134997 and rs12652447 in FBXL7 showed the strongest associations in BRCA2 carriers (HR = 1.55, 95% CI: 1.25-1.92, P(trend) = 6 x 10(-5) and HR = 1.37, 95% CI: 1.16-1.62, P(trend) = 1.7 x 10(-4)). The magnitude and direction of the associations were consistent with the original GWAS. In subsequent risk assessment studies, the loci appeared to interact multiplicatively for breast cancer risk in BRCA1 and BRCA2 carriers. Promising candidate SNPs from GWAS were identified as modifiers of breast cancer risk in BRCA1 and BRCA2 carriers. Upon further validation, these SNPs together with other genetic and environmental factors may improve breast cancer risk assessment in these populations.

Collaboration


Dive into the Claude Houdayer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge