Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Knauf is active.

Publication


Featured researches published by Claude Knauf.


Diabetes | 2007

Metabolic endotoxemia initiates obesity and insulin resistance

Patrice D. Cani; Jacques Amar; Miguel A. Iglesias; Marjorie Poggi; Claude Knauf; Delphine Bastelica; Audrey M. Neyrinck; Francesca Fava; Kieran M. Tuohy; Aurélie Waget; Evelyne Delmée; Béatrice Cousin; Thierry Sulpice; Bernard Chamontin; Jean Ferrières; Jean-François Tanti; Glenn R. Gibson; Louis Casteilla; Nathalie M. Delzenne; Marie Christine Alessi; Rémy Burcelin

Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation. Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in high-fat–fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not whole-body, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet–induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.


Diabetes | 2008

Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice

Patrice D. Cani; Rodrigo Bibiloni; Claude Knauf; Aurélie Waget; Audrey M. Neyrinck; Nathalie M. Delzenne; Rémy Burcelin

OBJECTIVE—Diabetes and obesity are characterized by a low-grade inflammation whose molecular origin is unknown. We previously determined, first, that metabolic endotoxemia controls the inflammatory tone, body weight gain, and diabetes, and second, that high-fat feeding modulates gut microbiota and the plasma concentration of lipopolysaccharide (LPS), i.e., metabolic endotoxemia. Therefore, it remained to demonstrate whether changes in gut microbiota control the occurrence of metabolic diseases. RESEARCH DESIGN AND METHODS—We changed gut microbiota by means of antibiotic treatment to demonstrate, first, that changes in gut microbiota could be responsible for the control of metabolic endotoxemia, the low-grade inflammation, obesity, and type 2 diabetes and, second, to provide some mechanisms responsible for such effect. RESULTS—We found that changes of gut microbiota induced by an antibiotic treatment reduced metabolic endotoxemia and the cecal content of LPS in both high-fat–fed and ob/ob mice. This effect was correlated with reduced glucose intolerance, body weight gain, fat mass development, lower inflammation, oxidative stress, and macrophage infiltration marker mRNA expression in visceral adipose tissue. Importantly, high-fat feeding strongly increased intestinal permeability and reduced the expression of genes coding for proteins of the tight junctions. Furthermore, the absence of CD14 in ob/ob CD14−/− mutant mice mimicked the metabolic and inflammatory effects of antibiotics. CONCLUSIONS—This new finding demonstrates that changes in gut microbiota controls metabolic endotoxemia, inflammation, and associated disorders by a mechanism that could increase intestinal permeability. It would thus be useful to develop strategies for changing gut microbiota to control, intestinal permeability, metabolic endotoxemia, and associated disorders.


Diabetologia | 2007

Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia.

Patrice D. Cani; Audrey M. Neyrinck; Francesca Fava; Claude Knauf; Rémy Burcelin; Kieran M. Tuohy; Glenn R. Gibson; Nathalie M. Delzenne

Aims/hypothesisRecent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes.MethodsSince bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]).ResultsCompared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines).Conclusions/interpretationTogether, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.


Cell | 2007

Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes

J. Andrew Pospisilik; Claude Knauf; Nicholas Joza; Paule Bénit; Michael Orthofer; Patrice D. Cani; Ingo Ebersberger; Tomoki Nakashima; G. Greg Neely; Harald Esterbauer; Andrey Kozlov; C. Ronald Kahn; Guido Kroemer; Pierre Rustin; Rémy Burcelin; Josef M. Penninger

Type-2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Recent studies place altered mitochondrial oxidative phosphorylation (OxPhos) as an underlying genetic element of insulin resistance. However, the causative or compensatory nature of these OxPhos changes has yet to be proven. Here, we show that muscle- and liver-specific AIF ablation in mice initiates a pattern of OxPhos deficiency closely mimicking that of human insulin resistance, and contrary to current expectations, results in increased glucose tolerance, reduced fat mass, and increased insulin sensitivity. These results are maintained upon high-fat feeding and in both genetic mosaic and ubiquitous OxPhos-deficient mutants. Importantly, the effects of AIF on glucose metabolism are acutely inducible and reversible. These findings establish that tissue-specific as well as global OxPhos defects in mice can counteract the development of insulin resistance, diabetes, and obesity.


Cell Metabolism | 2008

Apelin Stimulates Glucose Utilization in Normal and Obese Insulin-Resistant Mice

Cédric Dray; Claude Knauf; Danièle Daviaud; Aurélie Waget; Jeremie Boucher; Marie Buléon; Patrice D. Cani; Camille Attané; Charlotte Guigné; Christian Carpéné; Rémy Burcelin; Isabelle Castan-Laurell; Philippe Valet

Adipose tissue (AT) secretes several adipokines that influence insulin sensitivity and potentially link obesity to insulin resistance. Apelin, a peptide present in different tissues, is also secreted by adipocytes. Apelin is upregulated in obese and hyperinsulinemic humans and mice. Although a tight relation exists between the regulation of apelin and insulin, it remains largely unknown whether apelin affects whole-body glucose utilization. Herein, we show that in chow-fed mice, acute intravenous injection of apelin has a powerful glucose-lowering effect associated with enhanced glucose utilization in skeletal muscle and AT. Through in vivo and in vitro pharmacological and genetic approaches, we demonstrate the involvement of endothelial NO synthase, AMP-activated protein kinase, and Akt in apelin-stimulated glucose uptake in soleus muscle. Remarkably, in obese and insulin-resistant mice, apelin restored glucose tolerance and increased glucose utilization. Apelin could thus represent a promising target in the management of insulin resistance.


Diabetes | 2006

Improvement of Glucose Tolerance and Hepatic Insulin Sensitivity by Oligofructose Requires a Functional Glucagon-Like Peptide 1 Receptor

Patrice D. Cani; Claude Knauf; Miguel A. Iglesias; Daniel J. Drucker; Nathalie M. Delzenne; Rémy Burcelin

Nondigestible fermentable dietary fibers such as oligofructose (OFS) exert an antidiabetic effect and increase the secretion of glucagon-like peptide 1 (GLP-1). To determine the importance of GLP-1 receptor-dependent mechanisms for the actions of OFS, we studied high-fat-fed diabetic mice treated with OFS for 4 weeks in the presence or absence of the GLP-1 receptor antagonist exendin 9-39 (Ex-9). OFS improved glucose tolerance, fasting blood glucose, glucose-stimulated insulin secretion, and insulin-sensitive hepatic glucose production and reduced body weight gain. Ex-9 totally prevented the beneficial effects of OFS. Furthermore, GLP-1 receptor knockout mice (GLP-1R−/−) were completely insensitive to the antidiabetic actions of OFS. At the molecular level, the effects of OFS on endogenous glucose production correlated with changes of hepatic IRS (insulin receptor substrate)-2 and Akt phosphorylation in an Ex-9-dependent manner. As inflammation is associated with diabetes and obesity, we quantified nuclear factor-κB and inhibitor of κB kinase β in the liver. The activity of both intracellular inflammatory effectors was reduced by OFS but, importantly, this effect could not be reverted by Ex-9. In summary, our data show that the antidiabetic actions of OFS require a functional GLP-1 receptor. These findings highlight the therapeutic potential of enhancing endogenous GLP-1 secretion for the treatment of type 2 diabetes.


Journal of Clinical Investigation | 2005

Brain glucagon-like peptide-1 increases insulin secretion and muscle insulin resistance to favor hepatic glycogen storage

Claude Knauf; Patrice D. Cani; Christophe Perrin; Miguel A. Iglesias; Jean François Maury; Elodie Bernard; Fadilha Benhamed; Thierry Grémeaux; Daniel J. Drucker; C. Ronald Kahn; Jean Girard; Jean François Tanti; Nathalie M. Delzenne; Catherine Postic; Rémy Burcelin

Intestinal glucagon-like peptide-1 (GLP-1) is a hormone released into the hepatoportal circulation that stimulates pancreatic insulin secretion. GLP-1 also acts as a neuropeptide to control food intake and cardiovascular functions, but its neural role in glucose homeostasis is unknown. We show that brain GLP-1 controlled whole-body glucose fate during hyperglycemic conditions. In mice undergoing a hyperglycemic hyperinsulinemic clamp, icv administration of the specific GLP-1 receptor antagonist exendin 9-39 (Ex9) increased muscle glucose utilization and glycogen content. This effect did not require muscle insulin action, as it also occurred in muscle insulin receptor KO mice. Conversely, icv infusion of the GLP-1 receptor agonist exendin 4 (Ex4) reduced insulin-stimulated muscle glucose utilization. In hyperglycemia achieved by i.v. infusion of glucose, icv Ex4, but not Ex9, caused a 4-fold increase in insulin secretion and enhanced liver glycogen storage. However, when glucose was infused intragastrically, icv Ex9 infusion lowered insulin secretion and hepatic glycogen levels, whereas no effects of icv Ex4 were observed. In diabetic mice fed a high-fat diet, a 1-month chronic i.p. Ex9 treatment improved glucose tolerance and fasting glycemia. Our data show that during hyperglycemia, brain GLP-1 inhibited muscle glucose utilization and increased insulin secretion to favor hepatic glycogen stores, preparing efficiently for the next fasting state.


Frontiers in Microbiology | 2011

Altered gut microbiota and endocannabinoid system tone in obese and diabetic leptin-resistant mice: impact on apelin regulation in adipose tissue

Lucie Geurts; Vladimir Lazarevic; Muriel Derrien; Amandine Everard; Marie Van Roye; Claude Knauf; Philippe Valet; Myriam Girard; Giulio G. Muccioli; Patrice Francois; Willem M. de Vos; Jacques Schrenzel; Nathalie M. Delzenne; Patrice D. Cani

Growing evidence supports the role of gut microbiota in the development of obesity, type 2 diabetes, and low-grade inflammation. The endocrine activity of adipose tissue has been found to contribute to the regulation of glucose homeostasis and low-grade inflammation. Among the key hormones produced by this tissue, apelin has been shown to regulate glucose homeostasis. Recently, it has been proposed that gut microbiota participate in adipose tissue metabolism via the endocannabinoid system (eCB) and gut microbiota-derived compounds, namely lipopolysaccharide (LPS). We have investigated gut microbiota composition in obese and diabetic leptin-resistant mice (db/db) by combining pyrosequencing and phylogenetic microarray analysis of 16S ribosomal RNA gene sequences. We observed a significant higher abundance of Firmicutes, Proteobacteria, and Fibrobacteres phyla in db/db mice compared to lean mice. The abundance of 10 genera was significantly affected by the genotype. We identified the roles of the eCB and LPS in the regulation of apelinergic system tone (apelin and APJ mRNA expression) in genetic obese and diabetic mice. By using in vivo and in vitro models, we have demonstrated that both the eCB and low-grade inflammation differentially regulate apelin and APJ mRNA expression in adipose tissue. Finally, deep-gut microbiota profiling revealed that the gut microbial community of type 2 diabetic mice is significantly different from that of their lean counterparts. This indicates specific relationships between the gut microbiota and the regulation of the apelinergic system. However, the exact roles of specific bacteria in shaping the phenotype of db/db mice remain to be determined.


PLOS ONE | 2009

Cannabinoid CB2 receptor potentiates obesity-associated inflammation, insulin resistance and hepatic steatosis.

Vanessa Deveaux; Thomas Cadoudal; Yasukatsu Ichigotani; Fatima Teixeira-Clerc; Alexandre Louvet; Sylvie Manin; Jeanne Tran Van Nhieu; Marie Pierre Belot; Andreas Zimmer; Patrick Even; Patrice D. Cani; Claude Knauf; Rémy Burcelin; Adeline Bertola; Yannick Le Marchand-Brustel; Philippe Gual; Ariane Mallat

Background Obesity-associated inflammation is of critical importance in the development of insulin resistance and non-alcoholic fatty liver disease. Since the cannabinoid receptor CB2 regulates innate immunity, the aim of the present study was to investigate its role in obesity-induced inflammation, insulin resistance and fatty liver. Methodology Murine obesity models included genetically leptin-deficient ob/ob mice and wild type (WT) mice fed a high fat diet (HFD), that were compared to their lean counterparts. Animals were treated with pharmacological modulators of CB2 receptors. Experiments were also performed in mice knock-out for CB2 receptors (Cnr2 −/−). Principal Findings In both HFD-fed WT mice and ob/ob mice, Cnr2 expression underwent a marked induction in the stromal vascular fraction of epididymal adipose tissue that correlated with increased fat inflammation. Treatment with the CB2 agonist JWH-133 potentiated adipose tissue inflammation in HFD-fed WT mice. Moreover, cultured fat pads isolated from ob/ob mice displayed increased Tnf and Ccl2 expression upon exposure to JWH-133. In keeping, genetic or pharmacological inactivation of CB2 receptors decreased adipose tissue macrophage infiltration associated with obesity, and reduced inductions of Tnf and Ccl2 expressions. In the liver of obese mice, Cnr2 mRNA was only weakly induced, and CB2 receptors moderately contributed to liver inflammation. HFD-induced insulin resistance increased in response to JWH-133 and reduced in Cnr2 −/− mice. Finally, HFD-induced hepatic steatosis was enhanced in WT mice treated with JWH-133 and blunted in Cnr2 −/− mice. Conclusion/Significance These data unravel a previously unrecognized contribution of CB2 receptors to obesity-associated inflammation, insulin resistance and non-alcoholic fatty liver disease, and suggest that CB2 receptor antagonists may open a new therapeutic approach for the management of obesity-associated metabolic disorders.


Beneficial Microbes | 2014

Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics

Lucie Geurts; Audrey M. Neyrinck; Nathalie M. Delzenne; Claude Knauf; Patrice D. Cani

Crosstalk between organs is crucial for controlling numerous homeostatic systems (e.g. energy balance, glucose metabolism and immunity). Several pathological conditions, such as obesity and type 2 diabetes, are characterised by a loss of or excessive inter-organ communication that contributes to the development of disease. Recently, we and others have identified several mechanisms linking the gut microbiota with the development of obesity and associated disorders (e.g. insulin resistance, type 2 diabetes, hepatic steatosis). Among these, we described the concept of metabolic endotoxaemia (increase in plasma lipopolysaccharide levels) as one of the triggering factors leading to the development of metabolic inflammation and insulin resistance. Growing evidence suggests that gut microbes contribute to the onset of low-grade inflammation characterising these metabolic disorders via mechanisms associated with gut barrier dysfunctions. We have demonstrated that enteroendocrine cells (producing glucagon-like peptide-1, peptide YY and glucagon-like peptide-2) and the endocannabinoid system control gut permeability and metabolic endotoxaemia. Recently, we hypothesised that specific metabolic dysregulations occurring at the level of numerous organs (e.g. gut, adipose tissue, muscles, liver and brain) rely from gut microbiota modifications. In this review, we discuss the mechanisms linking gut permeability, adipose tissue metabolism, and glucose homeostasis, and recent findings that show interactions between the gut microbiota, the endocannabinoid system and the apelinergic system. These specific systems are discussed in the context of the gut-to-peripheral organ axis (intestine, adipose tissue and brain) and impacts on metabolic regulation. In the present review, we also briefly describe the impact of a variety of non-digestible nutrients (i.e. inulin-type fructans, arabinoxylans, chitin glucans and polyphenols). Their effects on the composition of the gut microbiota and activity are discussed in the context of obesity and type 2 diabetes.

Collaboration


Dive into the Claude Knauf's collaboration.

Top Co-Authors

Avatar

Patrice D. Cani

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nathalie M. Delzenne

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Thibaut Duparc

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Abot

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey M. Neyrinck

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge