Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Libert is active.

Publication


Featured researches published by Claude Libert.


Journal of Leukocyte Biology | 2007

Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation

Philippe Van Lint; Claude Libert

The action of matrix metalloproteinases (MMPs) was originally believed to be restricted to degradation of the extracellular matrix; however, in recent years, it has become evident that these proteases can modify many nonmatrix substrates, such as cytokines and chemokines. The use of MMP‐deficient animals has revealed that these proteases can indeed influence the progression of various inflammatory processes. This review aims to provide the reader with a concise overview of these novel MMP functions in relation to leukocyte migration.


Cytokine & Growth Factor Reviews | 2003

α1-Acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties

Tino Hochepied; Franklin G. Berger; Heinz Baumann; Claude Libert

alpha(1)-Acid glycoprotein (AGP) is a protein with a molecular weight of 41-43 kDa and is heavily glycosylated (45%). Due to the presence of sialic acids, it is negatively charged (pI=2.7-3.2). AGP is an acute phase protein in all mammals investigated to date. The serum concentration of AGP rises several fold during an acute phase response, the systemic answer to a local inflammatory stimulus. Also, its glycosylation pattern can change depending on the type of inflammation. The biological function of this protein is not clear. A number of activities on different type of blood cells have been described. In vivo, AGP clearly has protective effects in several models of inflammation. Here we review the data supporting an anti-inflammatory and immunomodulating role of AGP.


Molecular and Cellular Biology | 2001

Essential Role of STAT3 in the Control of the Acute-Phase Response as Revealed by Inducible Gene Activation in the Liver

Tonino Alonzi; Diego Maritano; Barbara Gorgoni; Gabriella Rizzuto; Claude Libert; Valeria Poli

ABSTRACT We generated mice carrying a STAT3 allele amenable to Cre-mediated deletion and intercrossed them with Mx-Cre transgenic mice, in which the expression of Cre recombinase can be induced by type I interferon. Interferon-induced deletion of STAT3 occurred very efficiently (more than 90%) in the liver and slightly less efficiently (about 70%) in the bone marrow. Analysis of the induction of liver acute-phase genes in response to bacterial lipopolysaccharide unequivocally identifies STAT3 as a fundamental mediator of their induction. The different degrees of defectiveness displayed by the various genes allowed us to differentiate them into three separate groups according to their degree of dependence on STAT3. Induction was totally defective for group I genes, defective at 24 h but almost normal at earlier time points for group II genes, and only slightly defective for group III genes. This division was in good agreement with the known structures of the respective promoters. We also found that the overall induction of the transcription factors C/EBPβ and -δ was only minimally defective in the absence of STAT3. Finally, even though corticosterone levels and action were found to be normal in the conditional-mutant mice, production of both proinflammatory and antiinflammatory cytokines was increased and prolonged, probably as a result of STAT3 deletion in macrophages.


Immunity | 2011

RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome.

Linde Duprez; Nozomi Takahashi; Filip Van Hauwermeiren; Benjamin Vandendriessche; Vera Goossens; Tom Vanden Berghe; Wim Declercq; Claude Libert; Anje Cauwels; Peter Vandenabeele

Engagement of tumor necrosis factor receptor 1 signals two diametrically opposed pathways: survival-inflammation and cell death. An additional switch decides, depending on the cellular context, between caspase-dependent apoptosis and RIP kinase (RIPK)-mediated necrosis, also termed necroptosis. We explored the contribution of both cell death pathways in TNF-induced systemic inflammatory response syndrome (SIRS). Deletion of apoptotic executioner caspases (caspase-3 or -7) or inflammatory caspase-1 had no impact on lethal SIRS. However, deletion of RIPK3 conferred complete protection against lethal SIRS and reduced the amounts of circulating damage-associated molecular patterns. Pretreatment with the RIPK1 kinase inhibitor, necrostatin-1, provided a similar effect. These results suggest that RIPK1-RIPK3-mediated cellular damage by necrosis drives mortality during TNF-induced SIRS. RIPK3 deficiency also protected against cecal ligation and puncture, underscoring the clinical relevance of RIPK kinase inhibition in sepsis and identifying components of the necroptotic pathway that are potential therapeutic targets for treatment of SIRS and sepsis.


Trends in Microbiology | 2011

Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?

Lien Dejager; Iris Pinheiro; Eline Dejonckheere; Claude Libert

Sepsis is a serious medical condition characterized by dysregulated systemic inflammatory responses followed by immunosuppression. To study the pathophysiology of sepsis, diverse animal models have been developed. Polymicrobial sepsis induced by cecal ligation and puncture (CLP) is the most frequently used model because it closely resembles the progression and characteristics of human sepsis. Here we summarize the role of several immune components in the pathogenesis of sepsis induced by CLP. However, several therapies proposed on the basis of promising results obtained by CLP could not be translated to the clinic. This demonstrates that experimental sepsis models do not completely mimic human sepsis. We propose several strategies to narrow the gap between experimental sepsis models and clinical sepsis, including targeting factors that contribute to the immunosuppressive phase of sepsis, and reproducing the heterogeneity of human patients.


Nature Reviews Drug Discovery | 2014

Is there new hope for therapeutic matrix metalloproteinase inhibition

Roosmarijn E. Vandenbroucke; Claude Libert

Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that form a family of 24 members in mammals. Evidence of the pathological roles of MMPs in various diseases, combined with their druggability, has made them attractive therapeutic targets. Initial drug discovery efforts focused on the roles of MMPs in cancer progression, and more than 50 MMP inhibitors have been investigated in clinical trials in various cancers. However, all of these trials failed. Reasons for failure include the lack of inhibitor specificity and insufficient knowledge about the complexity of the disease biology. MMPs are also known to be involved in several inflammatory processes, and there are new therapeutic opportunities for MMP inhibitors to treat such diseases. In this Review, we discuss the recent advances made in understanding the role of MMPs in inflammatory diseases and the therapeutic potential of MMP inhibition in those conditions.


Nature Cell Biology | 2007

Caspase-14 protects against epidermal UVB photodamage and water loss.

Geertrui Denecker; Esther Hoste; Barbara Gilbert; Tino Hochepied; Petra Ovaere; Saskia Lippens; Caroline Van den Broecke; Petra Van Damme; Katharina D'Herde; Jean Pierre Hachem; Gaetan Borgonie; Richard B. Presland; Luc Schoonjans; Claude Libert; Joël Vandekerckhove; Kris Gevaert; Peter Vandenabeele; Wim Declercq

Caspase-14 belongs to a conserved family of aspartate-specific proteinases. Its expression is restricted almost exclusively to the suprabasal layers of the epidermis and the hair follicles. Moreover, the proteolytic activation of caspase-14 is associated with stratum corneum formation, implicating caspase-14 in terminal keratinocyte differentiation and cornification. Here, we show that the skin of caspase-14-deficient mice was shiny and lichenified, indicating an altered stratum-corneum composition. Caspase-14-deficient epidermis contained significantly more alveolar keratohyalin F-granules, the profilaggrin stores. Accordingly, caspase-14-deficient epidermis is characterized by an altered profilaggrin processing pattern and we show that recombinant caspase-14 can directly cleave profilaggrin in vitro. Caspase-14-deficient epidermis is characterized by reduced skin-hydration levels and increased water loss. In view of the important role of filaggrin in the structure and moisturization of the skin, the knockout phenotype could be explained by an aberrant processing of filaggrin. Importantly, the skin of caspase-14-deficient mice was highly sensitive to the formation of cyclobutane pyrimidine dimers after UVB irradiation, leading to increased levels of UVB-induced apoptosis. Removal of the stratum corneum indicate that caspase-14 controls the UVB scavenging capacity of the stratum corneum.


Journal of Biological Chemistry | 2007

Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity

Mary Kaileh; Wim Vanden Berghe; Arne Heyerick; Julie Horion; Jacques Piette; Claude Libert; Denis De Keukeleire; Tamer Essawi; Guy Haegeman

The transcription factor NFκB plays a critical role in normal and pathophysiological immune responses. Therefore, NFκB and the signaling pathways that regulate its activation have become a major focus of drug development programs. Withania somnifera (WS) is a medicinal plant that is widely used in Palestine for the treatment of various inflammatory disorders. In this study we show that the leave extract of WS, as well as its major constituent withaferin A (WA), potently inhibits NFκB activation by preventing the tumor necrosis factor-induced activation of IκB kinase β via a thioalkylation-sensitive redox mechanism, whereas other WS-derived steroidal lactones, such as withanolide A and 12-deoxywithastramonolide, are far less effective. To our knowledge, this is the first communication of IκB kinase β inhibition by a plant-derived inhibitor, coinciding with MEK1/ERK-dependent Ser-181 hyperphosphorylation. This prevents IκB phosphorylation and degradation, which subsequently blocks NFκB translocation, NFκB/DNA binding, and gene transcription. Taken together, our results indicate that pure WA or WA-enriched WS extracts can be considered as a novel class of NFκB inhibitors, which hold promise as novel anti-inflammatory agents for treatment of various inflammatory disorders and/or cancer.


Nature Reviews Immunology | 2010

The X chromosome in immune functions: when a chromosome makes the difference

Claude Libert; Lien Dejager; Iris Pinheiro

In response to various immune challenges, females show better survival than males; the X chromosome has an important role in this immunological advantage. X chromosome-linked diseases are usually restricted to males, who have only one copy of the X chromosome; however, females are more prone to autoimmune diseases, and the X chromosome may be involved in the breakdown of self tolerance. Several hypotheses have been proposed in recent years that support a role for the X chromosome in shaping autoimmune responses. Here, we review the main mechanisms responsible for increased immune activity in females. This provides a survival advantage in the face of pathogenic insult but can also enhance the susceptibility of females to autoimmunity.


Journal of Experimental Medicine | 2009

Interleukin (IL)-23 mediates Toxoplasma gondii–induced immunopathology in the gut via matrixmetalloproteinase-2 and IL-22 but independent of IL-17

Melba Muñoz; Markus M. Heimesaat; Kerstin Danker; Daniela Struck; Uwe Lohmann; Rita Plickert; Stefan Bereswill; André Fischer; Ildiko R. Dunay; Kerstin Wolk; Christoph Loddenkemper; Hans-Willi Krell; Claude Libert; Leif R. Lund; Oliver Frey; Christoph Hölscher; Yoichiro Iwakura; Nico Ghilardi; Wenjun Ouyang; Thomas Kamradt; Robert Sabat; Oliver Liesenfeld

Peroral infection with Toxoplasma gondii leads to the development of small intestinal inflammation dependent on Th1 cytokines. The role of Th17 cells in ileitis is unknown. We report interleukin (IL)-23–mediated gelatinase A (matrixmetalloproteinase [MMP]-2) up-regulation in the ileum of infected mice. MMP-2 deficiency as well as therapeutic or prophylactic selective gelatinase blockage protected mice from the development of T. gondii–induced immunopathology. Moreover, IL-23–dependent up-regulation of IL-22 was essential for the development of ileitis, whereas IL-17 was down-regulated and dispensable. CD4+ T cells were the main source of IL-22 in the small intestinal lamina propria. Thus, IL-23 regulates small intestinal inflammation via IL-22 but independent of IL-17. Gelatinases may be useful targets for treatment of intestinal inflammation.

Collaboration


Dive into the Claude Libert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben Wielockx

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Everaerdt

Laboratory of Molecular Biology

View shared research outputs
Researchain Logo
Decentralizing Knowledge