Claude Marineau
Université de Montréal
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claude Marineau.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Julie Gauthier; Nathalie Champagne; Ronald G. Lafrenière; Lan Xiong; Dan Spiegelman; Edna Brustein; Mathieu Lapointe; Huashan Peng; Mélanie Côté; Anne Noreau; Fadi F. Hamdan; Anjene Addington; Judith L. Rapoport; Lynn E. DeLisi; Marie-Odile Krebs; Ridha Joober; Ferid Fathalli; Fayçal Mouaffak; Ali P. Haghighi; Christian Neri; Marie-Pierre Dubé; Mark E. Samuels; Claude Marineau; Eric A. Stone; Philip A. Barker; Salvatore Carbonetto; Pierre Drapeau; Guy A. Rouleau
Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders.
American Journal of Medical Genetics | 2009
Julie Gauthier; Dan Spiegelman; Amélie Piton; Ronald G. Lafrenière; Sandra Laurent; Judith St-Onge; Line Lapointe; Fadi F. Hamdan; Patrick Cossette; Laurent Mottron; Eric Fombonne; Ridha Joober; Claude Marineau; Pierre Drapeau; Guy A. Rouleau
A number of studies have confirmed that genetic factors play an important role in autism spectrum disorder (ASD). More recently de novo mutations in the SHANK3 gene, a synaptic scaffolding protein, have been associated with the ASD phenotype. As part of our gene discovery strategy, we sequenced the SHANK3 gene in a cohort of 427 ASD subjects and 190 controls. Here, we report the identification of two putative causative mutations: one being a de novo deletion at an intronic donor splice site and one missense transmitted from an epileptic father. We were able to confirm the deleterious effect of the splice site deletion by RT‐PCR using mRNA extracted from cultured lymphoblastoid cells. The missense mutation, a leucine to proline at amino acid position 68, is perfectly conserved across all species examined, and would be predicted to disrupt an alpha‐helical domain. These results further support the role of SHANK3 gene disruption in the etiology of ASD.
American Journal of Human Genetics | 2011
Fadi F. Hamdan; Julie Gauthier; Yoichi Araki; Da-Ting Lin; Yuhki Yoshizawa; Kyohei Higashi; A-Reum Park; Dan Spiegelman; Amélie Piton; Hideyuki Tomitori; Hussein Daoud; Christine Massicotte; Edouard Henrion; Ousmane Diallo; Masoud Shekarabi; Claude Marineau; Michael Shevell; Bruno Maranda; Grant A. Mitchell; Amélie Nadeau; Guy D'Anjou; Michel Vanasse; Myriam Srour; Ronald G. Lafrenière; Pierre Drapeau; Jean Claude Lacaille; Eunjoon Kim; Jae-Ran Lee; Kazuei Igarashi; Richard L. Huganir
Little is known about the genetics of nonsyndromic intellectual disability (NSID). We hypothesized that de novo mutations (DNMs) in synaptic genes explain an important fraction of sporadic NSID cases. In order to investigate this possibility, we sequenced 197 genes encoding glutamate receptors and a large subset of their known interacting proteins in 95 sporadic cases of NSID. We found 11 DNMs, including ten potentially deleterious mutations (three nonsense, two splicing, one frameshift, four missense) and one neutral mutation (silent) in eight different genes. Calculation of point-substitution DNM rates per functional and neutral site showed significant excess of functional DNMs compared to neutral ones. De novo truncating and/or splicing mutations in SYNGAP1, STXBP1, and SHANK3 were found in six patients and are likely to be pathogenic. De novo missense mutations were found in KIF1A, GRIN1, CACNG2, and EPB41L1. Functional studies showed that all these missense mutations affect protein function in cell culture systems, suggesting that they may be pathogenic. Sequencing these four genes in 50 additional sporadic cases of NSID identified a second DNM in GRIN1 (c.1679_1681dup/p.Ser560dup). This mutation also affects protein function, consistent with structural predictions. None of these mutations or any other DNMs were identified in these genes in 285 healthy controls. This study highlights the importance of the glutamate receptor complexes in NSID and further supports the role of DNMs in this disorder.
American Journal of Human Genetics | 2010
Julie Gauthier; Rachel A. Myers; Ferran Casals; Fadi F. Hamdan; Alexander R. Griffing; Mélanie Côté; Edouard Henrion; Dan Spiegelman; Julien Tarabeux; Amélie Piton; Yan Yang; Adam R. Boyko; Carlos Bustamante; Lan Xiong; Judith L. Rapoport; Anjene Addington; J. Lynn E. DeLisi; Marie-Odile Krebs; Ridha Joober; Bruno Millet; Eric Fombonne; Laurent Mottron; Martine Zilversmit; Jon Keebler; Hussein Daoud; Claude Marineau; Marie-Hélène Roy-Gagnon; Marie-Pierre Dubé; Adam Eyre-Walker; Pierre Drapeau
The role of de novo mutations (DNMs) in common diseases remains largely unknown. Nonetheless, the rate of de novo deleterious mutations and the strength of selection against de novo mutations are critical to understanding the genetic architecture of a disease. Discovery of high-impact DNMs requires substantial high-resolution interrogation of partial or complete genomes of families via resequencing. We hypothesized that deleterious DNMs may play a role in cases of autism spectrum disorders (ASD) and schizophrenia (SCZ), two etiologically heterogeneous disorders with significantly reduced reproductive fitness. We present a direct measure of the de novo mutation rate (μ) and selective constraints from DNMs estimated from a deep resequencing data set generated from a large cohort of ASD and SCZ cases (n = 285) and population control individuals (n = 285) with available parental DNA. A survey of ∼430 Mb of DNA from 401 synapse-expressed genes across all cases and 25 Mb of DNA in controls found 28 candidate DNMs, 13 of which were cell line artifacts. Our calculated direct neutral mutation rate (1.36 × 10(-8)) is similar to previous indirect estimates, but we observed a significant excess of potentially deleterious DNMs in ASD and SCZ individuals. Our results emphasize the importance of DNMs as genetic mechanisms in ASD and SCZ and the limitations of using DNA from archived cell lines to identify functional variants.
Molecular Psychiatry | 2011
Amélie Piton; Julie Gauthier; Fadi F. Hamdan; Ronald G. Lafrenière; Yan Yang; Edouard Henrion; Sandra Laurent; Anne Noreau; Pascale Thibodeau; Karemera L; Dan Spiegelman; Kuku F; Duguay J; Destroismaisons L; Jolivet P; Mélanie Côté; Lachapelle K; Ousmane Diallo; Raymond A; Claude Marineau; Nathalie Champagne; Lan Xiong; Claudia Gaspar; Jean-Baptiste Rivière; Julien Tarabeux; Patrick Cossette; Marie-Odile Krebs; Judith L. Rapoport; Anjene Addington; Lynn E. DeLisi
Autism spectrum disorder (ASD) and schizophrenia (SCZ) are two common neurodevelopmental syndromes that result from the combined effects of environmental and genetic factors. We set out to test the hypothesis that rare variants in many different genes, including de novo variants, could predispose to these conditions in a fraction of cases. In addition, for both disorders, males are either more significantly or more severely affected than females, which may be explained in part by X-linked genetic factors. Therefore, we directly sequenced 111 X-linked synaptic genes in individuals with ASD (n=142; 122 males and 20 females) or SCZ (n=143; 95 males and 48 females). We identified >200 non-synonymous variants, with an excess of rare damaging variants, which suggest the presence of disease-causing mutations. Truncating mutations in genes encoding the calcium-related protein IL1RAPL1 (already described in Piton et al. Hum Mol Genet 2008) and the monoamine degradation enzyme monoamine oxidase B were found in ASD and SCZ, respectively. Moreover, several promising non-synonymous rare variants were identified in genes encoding proteins involved in regulation of neurite outgrowth and other various synaptic functions (MECP2, TM4SF2/TSPAN7, PPP1R3F, PSMD10, MCF2, SLITRK2, GPRASP2, and OPHN1).
The New England Journal of Medicine | 2009
Fadi F. Hamdan; Julie Gauthier; Dan Spiegelman; Anne Noreau; Yan Yang; Stéphanie Pellerin; Mélanie Côté; Elizabeth Perreau-Linck; Lionel Carmant; Guy D’Anjou; Eric Fombonne; Anjene Addington; Judith L. Rapoport; Lynn E. DeLisi; Marie-Odile Krebs; Fayçal Mouaffak; Ridha Joober; Laurent Mottron; Pierre Drapeau; Claude Marineau; Ronald G. Lafrenière; Jean Claude Lacaille; Guy A. Rouleau; Jacques L. Michaud
Although autosomal forms of nonsyndromic mental retardation account for the majority of cases of mental retardation, the genes that are involved remain largely unknown. We sequenced the autosomal gene SYNGAP1, which encodes a ras GTPase-activating protein that is critical for cognition and synapse function, in 94 patients with nonsyndromic mental retardation. We identified de novo truncating mutations (K138X, R579X, and L813RfsX22) in three of these patients. In contrast, we observed no de novo or truncating mutations in SYNGAP1 in samples from 142 subjects with autism spectrum disorders, 143 subjects with schizophrenia, and 190 control subjects. These results indicate that SYNGAP1 disruption is a cause of autosomal dominant nonsyndromic mental retardation.
Human Molecular Genetics | 2008
Amélie Piton; Jacques L. Michaud; Huashan Peng; Swaroop Aradhya; Julie Gauthier; Laurent Mottron; Nathalie Champagne; Ronald G. Lafrenière; Fadi F. Hamdan; S D team; Ridha Joober; Eric Fombonne; Claude Marineau; Patrick Cossette; Marie-Pierre Dubé; Pejmun Haghighi; Pierre Drapeau; Philip A. Barker; Salvatore Carbonetto; Guy A. Rouleau
In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed that the function of the resulting truncated IL1RAPL1 protein is severely altered in hippocampal neurons, by measuring its effect on neurite outgrowth activity. We also sequenced the coding region of the close related member IL1RAPL2 and of NCS-1/FREQ, which physically interacts with IL1RAPL1, in a cohort of subjects with autism. The screening failed to identify non-synonymous variant in IL1RAPL2, whereas a rare missense (R102Q) in NCS-1/FREQ was identified in one autistic patient. Furthermore, we identified by comparative genomic hybridization a large intragenic deletion of exons 3-7 of IL1RAPL1 in three brothers with autism and/or MR. This deletion causes a frameshift and the introduction of a premature stop codon, Ala28GlufsX15, at the very beginning of the protein. All together, our results indicate that mutations in IL1RAPL1 cause a spectrum of neurological impairments ranging from MR to high functioning autism.
Annals of Neurology | 2009
Fadi F. Hamdan; Amélie Piton; Julie Gauthier; Anne Lortie; François Dubeau; Dan Spiegelman; Anne Noreau; Stéphanie Pellerin; Mélanie Côté; Edouard Henrion; Eric Fombonne; Laurent Mottron; Claude Marineau; Pierre Drapeau; Ronald G. Lafrenière; Jean Claude Lacaille; Guy A. Rouleau; Jacques L. Michaud
We sequenced genes coding for components of the SNARE complex (STX1A, VAMP2, SNAP25) and their regulatory proteins (STXBP1/Munc18‐1, SYT1), which are essential for neurotransmission, in 95 patients with idiopathic mental retardation. We identified de novo mutations in STXBP1 (nonsense, p.R388X; splicing, c.169+1G>A) in two patients with severe mental retardation and nonsyndromic epilepsy. Reverse transcriptase polymerase chain reaction and sequencing showed that the splicing mutation creates a stop codon downstream of exon‐3. No de novo or deleterious mutations in STXBP1 were found in 190 control subjects, or in 142 autistic patients. These results suggest that STXBP1 disruption is associated with autosomal dominant mental retardation and nonsyndromic epilepsy. Ann Neurol 2009;65:748–753
Neurology | 1993
Stefan-M. Pulst; Guy A. Rouleau; Claude Marineau; Pamela R. Fain; J. P. Sieb
Meningiomas frequently lose parts of chromosome 22 (CHR 22), suggesting that a meningioma tumor-suppressor gene is located on CHR 22. Since meningiomas are common in neurofibromatosis 2 (NF2) and the NF2 gene is mapped to CHR 22, the NF2 gene is a candidate for the meningioma gene. To determine whether NF2 and familial meningioma are allelic mutations, we studied a family with multiple meningiomas and ependymomas in two generations using genetic linkage analysis with DNA markers known to flank the NF2 locus. Multipoint linkage analysis resulted in location scores > −2 for a region of 15 cM including the NF2 region. These results support the existence of a familial meningioma locus that is distinct from the NF2 locus.
Neurology | 1996
Michel Melanson; Colin Chalk; L. Georgevich; K. Fett; Y. Lapierre; Hoang Duong; John Richardson; Claude Marineau; Guy A. Rouleau
A 78-year-old woman presented with a right basal ganglia infarct 6 weeks after a left herpes zoster ophthalmicus. MR angiography showed focal segmental stenosis of the proximal segments of the anterior, middle, and posterior cerebral arteries. Varicella DNA was detected in the CSF by polymerase chain reaction (PCR). Treated with dexamethasone and acyclovir without improvement, she died 1 month later. There was focal endarteritis in the left anterior, middle, and posterior cerebral arteries at autopsy. Varicella DNA was detected by PCR of extracts from these vessels but not from the arteries on the right side. This study provides further evidence that the vasculopathy after herpes zoster ophthalmicus results from direct viral invasion of the vessel wall. NEUROLOGY 1996;47: 569-570