Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude P. Muller is active.

Publication


Featured researches published by Claude P. Muller.


Emerging Infectious Diseases | 2008

Possible new hepatitis B virus genotype, southeast Asia.

Christophe M. Olinger; Prapan Jutavijittum; Judith M. Hübschen; Amnat Yousukh; Bounthome Samountry; Te Thammavong; Kan Toriyama; Claude P. Muller

We conducted a phylogenetic analysis of 19 hepatitis B virus strains from Laos that belonged to 2 subgenotypes of a new genotype I. This emerging new genotype likely developed outside Southeast Asia and is now found in mixed infections and in recombinations with local strains in a geographically confined region.


Psychoneuroendocrinology | 2010

Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed

Simone Alt; Jonathan D. Turner; Melanie D. Klok; E.A.J.F. Lakke; Roel H. DeRijk; Claude P. Muller

Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis is one of the most consistent findings in major depressive disorder (MDD). Impaired HPA feedback may be due to the lower glucocorticoid receptor (GR) or mineralocorticoid receptor (MR) levels in the forebrain. GR levels are transcriptionally controlled by multiple untranslated alternative first exons, each with its own promoter providing a mechanism for tissue-specific fine-tuning of GR levels. Recently epigenetic methylation of these GR promoters was shown to modulate hippocampal GR levels. Here we investigate in post-mortem brain tissues whether in MDD HPA axis hyperactivity may be due to epigenetic modulation of GR transcript variants. Levels of GRalpha, GRbeta and GR-P transcripts were homogeneous throughout the limbic system, with GRalpha being the most abundant (83%), followed by GR-P (5-6%) while GRbeta was barely detectable (0.02%). Among the alternative first exons, 1B and 1C were the most active, while 1E and 1J showed the lowest expression and transcript 1F expressed intermediate levels of about 1%. In MDD, total GR levels were unaltered, although GRalpha was decreased in the amygdala and cingulate gyrus (p<0.05); transcripts containing exons 1B, 1C and 1F were lower, and 1D and1J were increased in some regions. NGFI-A, a transcription factor of exon 1F was down-regulated in the hippocampus of MDD patients; concomitantly exon 1F expression was reduced. Bisulphite sequencing of the alternative promoters showed low methylation levels in both MDD and control brains. Promoter 1F was uniformly unmethylated, suggesting that reduced 1F transcript levels are not linked to promoter methylation but to the observed dearth of NGFI-A. Previous studies showed high methylation levels in the 1F promoter, associated with childhood abuse. Provided our donors were not abused, our results suggest that the pathomechanism of MDD is similar but nevertheless distinct from that of abuse victims, explaining the clinical similarity of both conditions and that susceptibility to depression may be either predisposed by early trauma or developed independent of such a condition. However, this should be further confirmed in dedicated studies in larger cohorts.


Biochemical Pharmacology | 2010

Transcriptional control of the glucocorticoid receptor: CpG islands, epigenetics and more.

Jonathan D. Turner; Simone Alt; Lei Cao; Sara Vernocchi; Slavena T. Trifonova; Nadia Battello; Claude P. Muller

The unique variability in the 5 region of the GR gene, with 9 alternative first exons and 13 splice variants plays a critical role in transcriptional control maintaining homeostasis of the glucocorticoid receptor (GR). This 5m RNA heterogeneity, common to all species investigated, remains untranslated since the alternative first exons are spliced to exon 2 immediately upstream of the translation initiation codon. These alternative first exons are located either immediately upstream of the coding exons in the CpG island (exons B-H and J), or further upstream (exons 1A and 1I). The mechanisms regulating the differential usage of these first exons in different tissues and individuals, and the role of the 5 UTR in the splicing of the coding exons are still poorly understood. Here we review some of the mechanisms that have so far been identified. Data from our laboratory and others have shown that the multiple first exons represent only a first layer of complexity orchestrated probably by tissue-specific transcription factors. Modulation of alternative first exon activity by epigenetic methylation of their promoters represents a second layer of complexity at least partially controlled by perinatal programming. The alternative promoter usage also appears to affect the 3 splicing generating the different GR coding variants, GRα, GRβ, and GR-P. Aberrant GR levels are associated with stress-related disorders such as depression, and affect social behaviour, mood, learning and memory. Dissecting how tissue-specific GR levels are regulated, in particular in the brain, is a first step to understand the significance of aberrant GR levels in disease and behaviour.


Nucleic Acids Research | 2008

Highly individual methylation patterns of alternative glucocorticoid receptor promoters suggest individualized epigenetic regulatory mechanisms

Jonathan D. Turner; Laetitia Pelascini; Joana A. Macedo; Claude P. Muller

The transcription start sites (TSS) and promoters of many genes are located in upstream CpG islands. Methylation within such islands is known for both imprinted and oncogenes, although poorly studied for other genes, especially those with complex CpG islands containing multiple first exons and promoters. The glucocorticoid receptor (GR) CpG island contains seven alternative first exons and their promoters. Here we show for the five GR promoters activated in PBMCs that methylation patterns are highly variable between individuals. The majority of positions were methylated at levels >25% in at least one donor affecting each promoter and TSS. We also examined the evolutionarily conserved transcription factor binding sites (TFBS) using an improved in silico phylogenetic footprinting technique. The majority of these contain methylatable CpG sites, suggesting that methylation may orchestrates alternative first exon usage, silencing and controlling tissue-specific expression. The heterogeneity observed may reflect epigenetic mechanisms of GR fine tuning, programmed by early life environment and events. With 78% of evolutionarily conserved alternative first exons falling into such complex CpG islands, their internal structure and epigenetic modifications are bound to be biologically important, and may be a common transcriptional control mechanism used throughout many phyla.


Journal of Psychiatric Research | 2011

Decreased expression of mineralocorticoid receptor mRNA and its splice variants in postmortem brain regions of patients with major depressive disorder

Melanie D. Klok; Simone Alt; Alicia J.M. Irurzun Lafitte; Jonathan D. Turner; E.A.J.F. Lakke; Inge Huitinga; Claude P. Muller; Frans G. Zitman; E. Ronald de Kloet; Roel H. DeRijk

Appropriate signaling in the brain by the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) is critical in regulation of the hypothalamic-pituitary-adrenal (HPA) axis, emotional arousal and cognitive performance. To date, few data exist on MR (and GR) expression in the brain of patients suffering from major depressive disorder (MDD). With the help of quantitative PCR we assessed MR and GR mRNA expression, including the splice variants MRα and MRβ, in tissue samples from the hippocampus, amygdala, inferior frontal gyrus, cingulate gyrus and nucleus accumbens. Expression levels were compared between tissue samples from six MDD patients and six non-depressed subjects. Relative to total GR, total MR mRNA expression was higher in hippocampus and lower in the amygdala, inferior frontal gyrus and nucleus accumbens. Both MRα and MRβ could be detected in all brain regions that were analyzed, although MRβ expression was low. Significantly lower expression levels (30-50%) were detected for MR or GR in hippocampal, inferior frontal gyrus and cingulate gyrus tissue from MDD patients (pxa0<xa0.05), while no differences were found in the amygdala or nucleus accumbens. The data show that both MRα and MRβ mRNA are expressed throughout the human limbic brain with highest expressions in the hippocampus. A decreased expression of corticosteroid receptors in specific brain regions of MDD patients could underlie HPA hyperactivity, mood and cognitive disturbances often observed in patients suffering from stress-related psychopathologies.


Human Genetics | 2011

Transcriptional control of the human glucocorticoid receptor: identification and analysis of alternative promoter regions

Lei Cao-Lei; Salomon Carlos Leija; Robert Kumsta; Stefan Wüst; Jobst Meyer; Jonathan D. Turner; Claude P. Muller

Glucocorticoid receptor levels are thought to be controlled by multiple alternative first exons. Seven of these exons are located in an upstream CpG island. In this study, we investigated the promoter activity of the intronic regions between these exons, and their susceptibility to CpG methylation and sequence variability. The seven promoters were cloned into luciferase reporter genes, and their activity measured in ten cell lines. CpG islands of 221 donors were genotyped and the effects of these SNPs were investigated in a reporter gene assay. We showed that each of the first exons was independently controlled by a unique promoter located directly upstream. Promoter activities were cell type-specific, and varied considerably between cell types. Irrespective of the cell type, in vitro methylation effectively silenced all reporter constructs. Eleven SNPs were observed within the CpG island of 221 donors, and a new promoter-specific haplotype was revealed. Four of the minor alleles reduced the reporter gene activity, with cell type specific effects. This complexity within the CpG island helps to explain the variable, tissue-specific transcriptional control of the GR, and provides insight into the mechanisms underlying tissue specific deregulation of GR levels.


Psychoneuroendocrinology | 2008

Glucocorticoid sensitivity in fibromyalgia patients : Decreased expression of corticosteroid receptors and glucocorticoid-induced leucine zipper

Joana A. Macedo; Judith Hesse; Jonathan D. Turner; Jobst Meyer; Dirk H. Hellhammer; Claude P. Muller

In fibromyalgia (FM) patients, differences in glucocorticoid receptor (GR) affinity and disturbances associated with loss of hypothalamic-pituitary-adrenal (HPA) axis resiliency have been observed. Based on these studies, we investigated whether FM would be associated with abnormalities in glucocorticoid (GC) sensitivity. Salivary and blood samples were collected from 27 FM patients and 29 healthy controls. Total plasma cortisol and salivary free cortisol were quantified by ELISA and time-resolved fluorescence immunoassay, respectively. GR sensitivity to dexamethasone was evaluated through IL-6 inhibition in stimulated whole blood. The corticosteroid receptors, GR alpha and mineralocorticoid receptor, as well as the glucocorticoid-induced leucine zipper (GILZ) and the FK506 binding protein 5 mRNA expression were assessed in peripheral blood mononuclear cells (PBMCs) by real-time RT-PCR. Furthermore, the corticosteroid receptors were analysed for polymorphism. We observed lower basal plasma cortisol levels (borderline statistical significance) and a lower expression of corticosteroid receptors and GILZ in FM patients when compared to healthy controls. The MR rs5522 (I180V) minor allele was found more often in FM patients than in controls and this variant was recently associated with a mild loss of receptor function. The lower GR and MR expression and possibly the reduced MR function may be associated with an impaired function of the HPA axis in these patients which, compounded by lower anti-inflammatory mediators, may sustain some of symptoms that contribute to the clinical picture of the syndrome.


Clinical Epigenetics | 2016

DNA methylation: conducting the orchestra from exposure to phenotype?

Fleur A. D. Leenen; Claude P. Muller; Jonathan D. Turner

DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC), is considered to be one of the principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming evident, where small (<10xa0%) changes to intermediate methylation levels are associated with complex disease phenotypes. This has resulted in two clear methylation paradigms. The latter “subtle change” paradigm is rapidly becoming the epigenetic hallmark of complex disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and meaning of these small differences.Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to numerous observational/association studies being performed. Although this expectation remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of such subtle methylation changes. Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA methylation, extensive 5′UTR splicing, and microvariability gives rise to the overall level and relative distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3C1 CpG island alters the NR3C1 transcription and eventually protein isoforms in the tissues, resulting in subtle but visible physiological variability.This review addresses the current pathophysiological and clinical associations of such characteristically small DNA methylation changes, the ever-growing roles of DNA methylation and the evidence available, particularly from the glucocorticoid receptor of the cascade of events initiated by such subtle methylation changes, as well as addressing the underlying question as to what represents a genuine biologically significant difference in methylation.


British Journal of Pharmacology | 2011

The proton translocation domain of cellular vacuolar ATPase provides a target for the treatment of influenza A virus infections

Konstantin H. Müller; Denis E. Kainov; Karim El Bakkouri; Xavier Saelens; Jef K. De Brabander; Christian Kittel; Elisabeth Samm; Claude P. Muller

BACKGROUND AND PURPOSE Cellular vacuolar ATPases (v‐ATPase) play an important role in endosomal acidification, a critical step in influenza A virus (IAV) host cell infection. We investigated the antiviral activity of the v‐ATPase inhibitor saliphenylhalamide (SaliPhe) and compared it with several older v‐ATPase inhibitors concanamycin A, bafilomycin A1, (BafA) and archazolid B targeting the subunit c of the V0 sector.


Biochimica et Biophysica Acta | 2014

Role of the 5′-untranslated regions in post-transcriptional regulation of the human glucocorticoid receptor

Jonathan D. Turner; Sara Vernocchi; Stephanie Schmitz; Claude P. Muller

GR transcripts display a remarkable heterogeneity in their 5 untranslated regions (5UTRs). These variable 5UTRs are encoded by a series of alternative 1st exons, and together with their associated promoters they maintain tissue-specific GR expression levels. In this study we over-expressed GR transcripts containing individual 1st exons, and assessed their effect on RNA stability, 3-splicing, translation initiation and protein isoform production. We showed that these alternative 5UTRs influence the predicted mRNA structure and free energy, and were associated with differential levels of functional spliced mRNA. However, the 5UTR had little influence on the relative levels of the two principal 3 splice transcripts, GR-α and -β. The overall mRNA length, the free energy of the transcript and the translational efficiency directly influenced total GR levels. However, individual N-terminal protein isoform levels appeared to depend upon elements within the 5UTR. Membrane-GR specific labelling suggested that the mGR originates from transcripts containing exon 1D and possibly 1H, although the specific trafficking sequences or structures within these transcripts remain unidentified. The role of the alternative first exons and their associated 5UTRs has now been expanded to translational control, influencing total GR levels, individual constituent isoform levels, as well as trafficking to the cell surface.

Collaboration


Dive into the Claude P. Muller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge