Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claude Penel is active.

Publication


Featured researches published by Claude Penel.


Plant Cell Reports | 2005

Peroxidases have more functions than a Swiss army knife

Filippo Passardi; Claudia Cosio; Claude Penel; Christophe Dunand

Plant peroxidases (class III peroxidases) are present in all land plants. They are members of a large multigenic family. Probably due to this high number of isoforms, and to a very heterogeneous regulation of their expression, plant peroxidases are involved in a broad range of physiological processes all along the plant life cycle. Due to two possible catalytic cycles, peroxidative and hydroxylic, peroxidases can generate reactive oxygen species (ROS) (•OH, HOO•), polymerise cell wall compounds, and regulate H2O2 levels. By modulating their activity and expression following internal and external stimuli, peroxidases are prevalent at every stage of plant growth, including the demands that the plant meets in stressful conditions. These multifunctional enzymes can build a rigid wall or produce ROS to make it more flexible; they can prevent biological and chemical attacks by raising physical barriers or by counterattacking with a large production of ROS; they can be involved in a more peaceful symbiosis. They are finally present from the first hours of a plant’s life until its last moments. Although some functions look paradoxical, the whole process is probably regulated by a fine-tuning that has yet to be elucidated. This review will discuss the factors that can influence this delicate balance.


In Vitro Cellular & Developmental Biology – Plant | 1996

Plant hormones and plant growth regulators in plant tissue culture

Thomas Gaspar; Claire Kevers; Claude Penel; Hubert Greppin; David M. Reid; Trevor A. Thorpe

SummaryThis is a short review of the classical and new, natural and synthetic plant hormones and growth regulators (phytohormones) and highlights some of their uses in plant tissue culture. Plant hormones rarely act alone, and for most processes— at least those that are observed at the organ level—many of these regulators have interacted in order to produce the final effect. The following substances are discussed: (a) Classical plant hormones (auxins, cytokinins, gibberellins, abscisic acid, ethylene and growth regulatory substances with similar biological effects. New, naturally occurring substances in these categories are still being discovered. At the same time, novel structurally related compounds are constantly being synthesized. There are also many new but chemically unrelated compounds with similar hormone-like activity being produced. A better knowledge of the uptake, transport, metabolism, and mode of action of phytohormones and the appearance of chemicals that inhibit synthesis, transport, and action of the native plant hormones has increased our knowledge of the role of these hormones in growth and development. (b) More recently discovered natural growth substances that have phytohormonal-like regulatory roles (polyamines, oligosaccharins, salicylates, jasmonates, sterols, brassinosteroids, dehydrodiconiferyl alcohol glucosides, turgorins, systemin, unrelated natural stimulators and inhibitors), as well as myoinositol. Many of these growth active substances have not yet been examined in relation to growth and organized developmentin vitro.


Gene | 2002

Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana

Michael Tognolli; Claude Penel; Hubert Greppin; Patrice Simon

Higher plants possess a large set of the classical guaiacol peroxidases (class III peroxidases, E.C. 1.11.1.7). These enzymes have been implicated in a wide array of physiological processes such as H(2)O(2) detoxification, auxin catabolism and lignin biosynthesis and stress response (wounding, pathogen attack, etc.). During the last 10 years, molecular cloning has allowed the isolation and characterization of several genes encoding peroxidases in plants. The achievement of the large scale Arabidopsis genome sequencing, combined with the DNA complementary to RNA (cDNA) expressed sequence tags projects, provided the opportunity to draw up the first comprehensive list of peroxidases in a plant. By screening the available databases, we have identified 73 peroxidase genes throughout the Arabidopsis genome. The evolution of the peroxidase multigene family has been investigated by analyzing the gene structure (intron/exon) in correlation with the phylogenetic relationships between the isoperoxidases. An evolutionary pattern of extensive gene duplications can be inferred and is discussed. Using a cDNA array procedure, the expression pattern of 23 peroxidases was established in the different organs of the plant. All the tested peroxidases were expressed at various levels in roots, while several were also detected in stems, leaves and flowers. The specific functions of these genes remain to be determined.


Planta | 2006

Two cell wall associated peroxidases from Arabidopsis influence root elongation

Filippo Passardi; Michael Tognolli; Mireille De Meyer; Claude Penel; Christophe Dunand

Two class III peroxidases from Arabidopsis, AtPrx33 and Atprx34, have been studied in this paper. Their encoding genes are mainly expressed in roots; AtPrx33 transcripts were also found in leaves and stems. Light activates the expression of both genes in seedlings. Transformed seedlings producing AtPrx33-GFP or AtPrx34-GFP fusion proteins under the control of the CaMV 35S promoter exhibit fluorescence in the cell walls of roots, showing that the two peroxidases are localized in the apoplast, which is in line with their affinity for the Ca2+-pectate structure. The role they can play in cell wall was investigated using (1) insertion mutants that have suppressed or reduced expression of AtPrx33 or AtPrx34 genes, respectively, (2) a double mutant with no AtPrx33 and a reduced level of Atprx34 transcripts, (3) a mutant overexpressing AtPrx34 under the control of the CaMV 35S promoter. The major phenotypic consequences of these genetic manipulations were observed on the variation of the length of seedling roots. Seedlings lacking AtPrx33 transcripts have shorter roots than the wild-type controls and roots are still shorter in the double mutant. Seedlings overexpressing AtPrx34 exhibit significantly longer roots. These modifications of root length are accompanied by corresponding changes of cell length. The results suggest that AtPrx33 and Atprx34, two highly homologous Arabidopsis peroxidases, are involved in the reactions that promote cell elongation and that this occurs most likely within cell walls.


The Plant Cell | 2001

Identification of a Ca(2+)-pectate binding site on an apoplastic peroxidase

Michèle Crèvecoeur; Mireille De Meyer; Patrice Simon; Hubert Greppin; Claude Penel

An apoplastic isoperoxidase from zucchini (APRX) was shown to bind strongly to polygalacturonic acid in their Ca2+-induced conformation. By homology modeling, we were able to identify a motif of four clustered arginines (positions 117, 262, 268, and 271) that could be responsible for this binding. To verify the role of these arginine residues in the binding process, we prepared three mutants of APRX (M1, R117S; M2, R262Q/R268S; and M3, R262Q/R268S/R271Q). APRX and the three mutants were expressed as recombinant glycoproteins by the baculovirus–insect cell system. This procedure yielded four active enzymes with similar molecular masses that were tested for their ability to bind Ca2+-pectate. Recombinant wild-type APRX exhibited an affinity for the pectic structure comparable to that of the native plant isoperoxidase. The mutations impaired binding depending on the number of arginine residues that were replaced. M1 and M2 showed intermediate affinities, whereas M3 did not bind at all. This was demonstrated using an in vitro binding test and on cell walls of hypocotyl cross-sections. It can be concluded that APRX bears a Ca2+-pectate binding site formed by four clustered arginines. This site could ensure that APRX is properly positioned in cell walls, using unesterified domains of pectins as a scaffold.


Plant Growth Regulation | 1998

Confirmation of the role of auxin and calcium in the late phases of adventitious root formation

Jalil Bellamine; Claude Penel; Hubert Greppin; Thomas Gaspar

Poplar shoots raised in vitro were induced to root by incubation on an auxin (NAA) containing medium for 7 h. After 13 days on an auxin-free medium, 97% of the treated shoots had rooted. The introduction of known antiauxins (PCIB, PBA, POAA) into the rooting expression auxin-free medium, after the 7-h induction by NAA, completely (PCIB and PBA) or severely (POAA) inhibited rooting. The exclusion of calcium from the expression auxin free medium reduced the percentage of rooting by about 42%. The inhibition was still higher in the presence of EGTA, a calcium chelator. Lanthanum chloride, a calcium channel blocker, also completely inhibited rooting, when incorporated into the auxin free medium, with or without calcium. These results support previous hypotheses about the implication of both endogenous auxin and calcium in the late phases of the adventitious rooting process.


In Vitro Cellular & Developmental Biology – Plant | 2003

Changing concepts in plant hormone action

Thomas Gaspar; Claire Kevers; Odile Faivre-Rampant; Michèle Crèvecoeur; Claude Penel; Hubert Greppin; Jacques Dommes

SummaryA plant hormone is not, in the classic animal sense, a chemical synthesized in one organ, transported to a second organ to exert a chemical action to control a physiological event. Any phytohormone can be synthesized everywhere and can influence different growth and development processes at different places. The concept of physiological activity under hormonal control cannot be dissociated from changes in concentrations at the site of action, from spatial differences and changes in the tissues sensitivity to the compound, from its transport and its metabolism, from balances and interactions with the other phytohormones, or in their metabolic relationships, and in their signaling pathways as well. Secondary messengers are also involved. Hormonal involvement in physiological processes can appear through several distinct manifestations (as environmental sensors, homeostatic regulators and spatio-temporal synchronizers, resource allocators, biotime adjusters, etc.), dependent on or integrated with the primary biochemical pathways. The time has also passed for the hypothesized ‘specific’ developmental hormones, rhizocaline, canlocaline, and florigen: root, stem, and flower formation result from a sequential control of specific events at the right places through a coordinated control by electrical signals, the known phytohormones and nonspecific molecules of primary and secondary metabolism, and involve both cytoplasmic and apoplastic compartments. These contemporary views are examined in this review.


Biochimica et Biophysica Acta | 2002

The novel non-glycosylated invertase from Candida utilis (the properties and the conditions of production and purification)

A. Belcarz; G. Ginalska; J. Lobarzewski; Claude Penel

The Candida utilis yeast, which is cultivated in liquid media enriched with saccharose, synthesizes the well-known invertase of 300 kDa (EC 3.2.1.26). This enzyme is present both intracellularly in the periplasmic space and extracellularly in the culture broth. However, it was determined that the same C. utilis strain cultured in certain conditions is simultaneously capable of producing another, still unknown form of invertase with a molecular mass of 60 kDa. The presence of the latter enzymatic form was detected in cells as well as in the liquid culture medium. Both invertase forms were purified using a three-step process (ion-exchange chromatography, affinity chromatography, and preparative column electrophoresis) and named, due to their different migration ratio in polyacrylamide gel electrophoresis, F-form (Fast; 60 kDa) and S-form (Slow; 300 kDa). The F-form of invertase was found to be nonglycosylated as opposed to the well-known S-form of invertase from the same source. The physicochemical properties of the F-form of invertase (isoelectric point, substrate specificity, pH, and temperature optima) were determined and compared with those of the S-form of the enzyme.


Journal of Biological Chemistry | 1997

The Hormone-responsive NADH Oxidase of the Plant Plasma Membrane Has Properties of a NADH:Protein Disulfide Reductase

Pin Ju Chueh; Dorothy M. Morré; Claude Penel; Tammy DeHahn; D. James Morré

Plasma membranes of plant cells are characterized by a plant hormone (auxin)-responsive oxidation of NADH. The latter proceeds under argon. Also, when NADH oxidation is stimulated 50% by auxin addition, oxygen consumption is reduced by 40%. These findings are reconciled by direct assays using 5,5′-dithiobis-(2nitrobenzoic acid) (DTNB) (Ellmans reagent) that show protein disulfides to be electron acceptors for auxin-stimulated NADH oxidation. In the presence of an external reducing agent such as NADH, cysteine, or dithiothreitol, protein disulfides of the membrane are reduced with a concomitant stoichiometric increase in free thiols. In the absence of an external reducing agent, or in the presence of oxidized glutathione, DTNB-reactive thiols of the plasma membrane are decreased in the presence of auxins. Several auxin-reductant combinations were effective, but the same reductants plus chemically related and growth-inactive auxin analogs were not. A cell surface location of the affected thiols demonstrated with detergents and impermeant thiol reagents suggests that the protein may have a different physiological role than oxidation of NADH. For example, it may carry out some other role more closely related to the function of the auxin hormones in cell enlargement such as protein disulfide-thiol interchange.


Plant Physiology | 1997

Effects of a Mechanical Stimulation on Localization of Annexin-Like Proteins in Bryonia dioica Internodes

Catherine Thonat; Catherine Mathieu; Michèle Crèvecoeur; Claude Penel; Thomas Gaspar; Nicole Boyer

Mechanical stimulation exerted by rubbing a young internode of Bryonia dioica plants inhibits its growth. Previous cellular and biochemical studies showed that this growth inhibition is associated with Ca2+ redistribution and profound modifications of plasma membrane characteristics. We extracted and purified Ca2+-dependent phospholipid-binding proteins from B. dioica internodes. Two main proteins, p33 and p35, and other minor bands were isolated and identified as annexin-like proteins because of their biochemical properties and their cross-reactions with antibodies against maize (Zea mays L.) annexins. Rabbit antiserum was obtained by injection of B. dioica p35. This antiserum was used for the immunocytolocalization of annexin-like proteins in internode parenchyma cells. It appeared that the distribution of annexin-like proteins was different before and 30 min after the mechanical stimulation. Western analysis of proteins in membrane fractions after separation by free-flow electrophoresis showed that p35 was present in most fractions, whereas p33 appeared mainly in plasmalemma-enriched fractions after the mechanical stimulation. It is hypothesized that a subcellular redistribution of these proteins might be involved in growth inhibition by mechanical stress.

Collaboration


Dive into the Claude Penel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge