Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Bagni is active.

Publication


Featured researches published by Claudia Bagni.


Cell | 2003

The Fragile X syndrome protein FMRP associates with BC1 RNA and regulates the translation of specific mRNAs at synapses

Francesca Zalfa; Marcello Giorgi; Beatrice Primerano; Annamaria Moro; Alessandra di Penta; Surya A. Reis; Ben A. Oostra; Claudia Bagni

The Fragile X syndrome, which results from the absence of functional FMRP protein, is the most common heritable form of mental retardation. Here, we show that FMRP acts as a translational repressor of specific mRNAs at synapses. Interestingly, FMRP associates not only with these target mRNAs, but also with the dendritic, non-translatable RNA BC1. Blocking of BC1 inhibits the interaction of FMRP with its target mRNAs. Furthermore, BC1 binds directly to FMRP and can also associate, in the absence of any protein, with the mRNAs regulated by FMRP. This suggests a mechanism where BC1 could determine the specificity of FMRP function by linking the regulated mRNAs and FMRP. Thus, when FMRP is not present, loss of translational repression of specific mRNAs at synapses could result in synaptic dysfunction phenotype of Fragile X patients.


Cell | 2008

The Fragile X Syndrome Protein Represses Activity-Dependent Translation through CYFIP1, a New 4E-BP

Ilaria Napoli; Valentina Mercaldo; Pietro Pilo Boyl; Boris Eleuteri; Francesca Zalfa; Silvia De Rubeis; Daniele Di Marino; Evita Mohr; Marzia Massimi; Mattia Falconi; Walter Witke; Mauro Costa-Mattioli; Nahum Sonenberg; Tilmann Achsel; Claudia Bagni

Strong evidence indicates that regulated mRNA translation in neuronal dendrites underlies synaptic plasticity and brain development. The fragile X mental retardation protein (FMRP) is involved in this process; here, we show that it acts by inhibiting translation initiation. A binding partner of FMRP, CYFIP1/Sra1, directly binds the translation initiation factor eIF4E through a domain that is structurally related to those present in 4E-BP translational inhibitors. Brain cytoplasmic RNA 1 (BC1), another FMRP binding partner, increases the affinity of FMRP for the CYFIP1-eIF4E complex in the brain. Levels of proteins encoded by known FMRP target mRNAs are increased upon reduction of CYFIP1 in neurons. Translational repression is regulated in an activity-dependent manner because BDNF or DHPG stimulation of neurons causes CYFIP1 to dissociate from eIF4E at synapses, thereby resulting in protein synthesis. Thus, the translational repression activity of FMRP in the brain is mediated, at least in part, by CYFIP1.


Nature Neuroscience | 2007

A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability

Francesca Zalfa; Boris Eleuteri; Kirsten S. Dickson; Valentina Mercaldo; Silvia De Rubeis; Alessandra di Penta; Elisabetta Tabolacci; Pietro Chiurazzi; Giovanni Neri; Seth G. N. Grant; Claudia Bagni

Fragile X syndrome (FXS) results from the loss of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates a variety of cytoplasmic mRNAs. FMRP regulates mRNA translation and may be important in mRNA localization to dendrites. We report a third cytoplasmic regulatory function for FMRP: control of mRNA stability. In mice, we found that FMRP binds, in vivo, the mRNA encoding PSD-95, a key molecule that regulates neuronal synaptic signaling and learning. This interaction occurs through the 3′ untranslated region of the PSD-95 (also known as Dlg4) mRNA, increasing message stability. Moreover, stabilization is further increased by mGluR activation. Although we also found that the PSD-95 mRNA is synaptically localized in vivo, localization occurs independently of FMRP. Through our functional analysis of this FMRP target we provide evidence that dysregulation of mRNA stability may contribute to the cognitive impairments in individuals with FXS.


Proceedings of the National Academy of Sciences of the United States of America | 2001

A highly conserved protein family interacting with the fragile X mental retardation protein (FMRP) and displaying selective interactions with FMRP-related proteins FXR1P and FXR2P

Annette Schenck; Barbara Bardoni; Annamaria Moro; Claudia Bagni; Jean-Louis Mandel

The absence of the fragile X mental retardation protein (FMRP), encoded by the FMR1 gene, is responsible for pathologic manifestations in the Fragile X Syndrome, the most frequent cause of inherited mental retardation. FMRP is an RNA-binding protein associated with polysomes as part of a messenger ribonucleoprotein (mRNP) complex. Although its function is poorly understood, various observations suggest a role in local protein translation at neuronal dendrites and in dendritic spine maturation. We present here the identification of CYFIP1/2 (Cytoplasmic FMRP Interacting Proteins) as FMRP interactors. CYFIP1/2 share 88% amino acid sequence identity and represent the two members in humans of a highly conserved protein family. Remarkably, whereas CYFIP2 also interacts with the FMRP-related proteins FXR1P/2P, CYFIP1 interacts exclusively with FMRP. FMRP–CYFIP interaction involves the domain of FMRP also mediating homo- and heteromerization, thus suggesting a competition between interaction among the FXR proteins and interaction with CYFIP. CYFIP1/2 are proteins of unknown function, but CYFIP1 has recently been shown to interact with the small GTPase Rac1, which is implicated in development and maintenance of neuronal structures. Consistent with FMRP and Rac1 localization in dendritic fine structures, CYFIP1/2 are present in synaptosomal extracts.


Nature Genetics | 2013

Exome sequencing identifies mutation in CNOT3 and ribosomal genes RPL5 and RPL10 in T-cell acute lymphoblastic leukemia

Kim De Keersmaecker; Zeynep Kalender Atak; Ning Li; Carmen Vicente; Stephanie Patchett; Tiziana Girardi; Valentina Gianfelici; Ellen Geerdens; Emmanuelle Clappier; Michaël Porcu; Idoya Lahortiga; Rossella Luca; Jiekun Yan; Gert Hulselmans; Hilde Vranckx; Roel Vandepoel; Bram Sweron; Kris Jacobs; Nicole Mentens; Iwona Wlodarska; Barbara Cauwelier; Jacqueline Cloos; Jean Soulier; Anne Uyttebroeck; Claudia Bagni; Bassem A. Hassan; Peter Vandenberghe; Arlen W. Johnson; Stein Aerts; Jan Cools

T-cell acute lymphoblastic leukemia (T-ALL) is caused by the cooperation of multiple oncogenic lesions. We used exome sequencing on 67 T-ALLs to gain insight into the mutational spectrum in these leukemias. We detected protein-altering mutations in 508 genes, with an average of 8.2 mutations in pediatric and 21.0 mutations in adult T-ALL. Using stringent filtering, we predict seven new oncogenic driver genes in T-ALL. We identify CNOT3 as a tumor suppressor mutated in 7 of 89 (7.9%) adult T-ALLs, and its knockdown causes tumors in a sensitized Drosophila melanogaster model. In addition, we identify mutations affecting the ribosomal proteins RPL5 and RPL10 in 12 of 122 (9.8%) pediatric T-ALLs, with recurrent alterations of Arg98 in RPL10. Yeast and lymphoid cells expressing the RPL10 Arg98Ser mutant showed a ribosome biogenesis defect. Our data provide insights into the mutational landscape of pediatric versus adult T-ALL and identify the ribosome as a potential oncogenic factor.


Journal of Clinical Investigation | 2012

Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics

Claudia Bagni; Flora Tassone; Giovanni Neri; Randi J. Hagerman

Fragile X syndrome (FXS) is the most frequent form of inherited intellectual disability and is also linked to other neurologic and psychiatric disorders. FXS is caused by a triplet expansion that inhibits expression of the FMR1 gene; the gene product, FMRP, regulates mRNA metabolism in the brain and thus controls the expression of key molecules involved in receptor signaling and spine morphology. While there is no definitive cure for FXS, the understanding of FMRP function has paved the way for rational treatment designs that could potentially reverse many of the neurobiological changes observed in FXS. Additionally, behavioral, pharmacological, and cognitive interventions can raise the quality of life for both patients and their families.


Biological Psychiatry | 2008

Abnormal Striatal GABA Transmission in the Mouse Model for the Fragile X Syndrome

Diego Centonze; Silvia Rossi; Valentina Mercaldo; Ilaria Napoli; Maria Teresa Ciotti; Valentina De Chiara; Alessandra Musella; Chiara Prosperetti; Paolo Calabresi; Giorgio Bernardi; Claudia Bagni

BACKGROUND Structural and functional neuroimaging studies suggest abnormal activity in the striatum of patients with the fragile X syndrome (FXS), the most common form of inherited mental retardation. METHODS Neurophysiological and immunofluorescence experiments in striatal brain slices. We studied the synaptic transmission in a mouse model for FXS, as well as the subcellular localization of fragile X mental retardation protein (FMRP) and brain cytoplasmic (BC1) RNA in striatal axons. RESULTS Our results show that absence of FMRP is associated with apparently normal striatal glutamate-mediated transmission, but abnormal gamma-aminobutyric acid (GABA) transmission. This effect is likely secondary to increased transmitter release from GABAergic nerve terminals. We detected the presence of FMRP in axons of striatal neurons and observed a selective increase in the frequency of spontaneous and miniature inhibitory postsynaptic currents (sIPSCs, mIPSCs) in fmr1-knockout mice. We also observed reduced paired-pulse ratio of evoked IPSCs, a finding that is consistent with the idea that transmitter release probability from striatal GABAergic nerve terminals is higher than normal in these mutants. Finally, we have identified the small noncoding BC1 RNA as a critical coplayer of FMRP in the regulation of striatal synaptic transmission. CONCLUSIONS Understanding the physiologic action of FMRP and the synaptic defects associated with GABA transmission might be useful to design appropriate pharmacologic interventions for FXS.


Neuron | 2013

CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation

Silvia De Rubeis; Emanuela Pasciuto; Ka Wan Li; Esperanza Fernández; Daniele Di Marino; Andrea Buzzi; Linnaea E. Ostroff; Eric Klann; Fried J. T. Zwartkruis; Noboru H. Komiyama; Seth G. N. Grant; Christel Poujol; Daniel Choquet; Tilmann Achsel; Danielle Posthuma; August B. Smit; Claudia Bagni

Summary The CYFIP1/SRA1 gene is located in a chromosomal region linked to various neurological disorders, including intellectual disability, autism, and schizophrenia. CYFIP1 plays a dual role in two apparently unrelated processes, inhibiting local protein synthesis and favoring actin remodeling. Here, we show that brain-derived neurotrophic factor (BDNF)-driven synaptic signaling releases CYFIP1 from the translational inhibitory complex, triggering translation of target mRNAs and shifting CYFIP1 into the WAVE regulatory complex. Active Rac1 alters the CYFIP1 conformation, as demonstrated by intramolecular FRET, and is key in changing the equilibrium of the two complexes. CYFIP1 thus orchestrates the two molecular cascades, protein translation and actin polymerization, each of which is necessary for correct spine morphology in neurons. The CYFIP1 interactome reveals many interactors associated with brain disorders, opening new perspectives to define regulatory pathways shared by neurological disabilities characterized by spine dysmorphogenesis.


Current Opinion in Neurobiology | 2006

mRNPs, polysomes or granules: FMRP in neuronal protein synthesis

Francesca Zalfa; Tilmann Achsel; Claudia Bagni

mRNA localization and regulated translation play central roles in neurite outgrowth and synaptic plasticity. A key molecule in these processes is the Fragile X mental retardation protein, FMRP, which is involved in the metabolism of neuronal mRNAs. Absence or mutation of FMRP leads to spine dysmorphogenesis and impairs synaptic plasticity. Studies that have mainly been performed on the mouse and Drosophila models for Fragile X Syndrome showed that FMRP is involved in translational regulation at synapses, but even 15 years after discovery of the FMR1 gene, the precise working mechanisms remain elusive.


Molecular and Cellular Neuroscience | 2010

Fragile X mental retardation protein control of neuronal mRNA metabolism: Insights into mRNA stability.

Silvia De Rubeis; Claudia Bagni

The fragile X mental retardation protein (FMRP) is an RNA binding protein that has an essential role in neurons. From the soma to the synapse, FMRP is associated with a specific subset of messenger RNAs and controls their posttranscriptional fates, i.e., dendritic localization and local translation. Because FMRP target mRNAs encode important neuronal proteins, the deregulation of their expression in the absence of FMRP leads to a strong impairment of synaptic function. Here, we review emerging evidence indicating a critical role for FMRP in the control of mRNA stability. To date, two mRNAs have been identified as being regulated in this manner: PSD-95 mRNA, encoding a scaffolding protein, and Nxf1 mRNA, encoding a general export factor. Moreover, expression studies suggest that the turnover of other neuronal mRNAs, including those encoding for the GABA(A) receptors subunits, could be affected by the loss of FMRP. According to the specific target and/or cellular context, FMRP could influence mRNA stability in the brain.

Collaboration


Dive into the Claudia Bagni's collaboration.

Top Co-Authors

Avatar

Francesca Zalfa

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Tilmann Achsel

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Francesco Amaldi

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Emanuela Pasciuto

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rossella Luca

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Flora Tassone

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Pacini

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge