Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia C. Faria is active.

Publication


Featured researches published by Claudia C. Faria.


Nature | 2014

Epigenomic alterations define lethal CIMP-positive ependymomas of infancy.

Stephen C. Mack; Hendrik Witt; Rosario M. Piro; Lei Gu; Scott Zuyderduyn; A. M. Stütz; Xiaosong Wang; Marco Gallo; Livia Garzia; Kory Zayne; Xiaoyang Zhang; Vijay Ramaswamy; Natalie Jäger; David T. W. Jones; Martin Sill; Trevor J. Pugh; M. Ryzhova; Khalida Wani; David Shih; Renee Head; Marc Remke; S. D. Bailey; Thomas Zichner; Claudia C. Faria; Mark Barszczyk; Sebastian Stark; Huriye Seker-Cin; Sonja Hutter; Pascal Johann; Sebastian Bender

Ependymomas are common childhood brain tumours that occur throughout the nervous system, but are most common in the paediatric hindbrain. Current standard therapy comprises surgery and radiation, but not cytotoxic chemotherapy as it does not further increase survival. Whole-genome and whole-exome sequencing of 47 hindbrain ependymomas reveals an extremely low mutation rate, and zero significant recurrent somatic single nucleotide variants. Although devoid of recurrent single nucleotide variants and focal copy number aberrations, poor-prognosis hindbrain ependymomas exhibit a CpG island methylator phenotype. Transcriptional silencing driven by CpG methylation converges exclusively on targets of the Polycomb repressive complex 2 which represses expression of differentiation genes through trimethylation of H3K27. CpG island methylator phenotype-positive hindbrain ependymomas are responsive to clinical drugs that target either DNA or H3K27 methylation both in vitro and in vivo. We conclude that epigenetic modifiers are the first rational therapeutic candidates for this deadly malignancy, which is epigenetically deregulated but genetically bland.


Lancet Oncology | 2013

Recurrence patterns across medulloblastoma subgroups: an integrated clinical and molecular analysis

Vijay Ramaswamy; Marc Remke; Eric Bouffet; Claudia C. Faria; Sébastien Perreault; Yoon-Jae Cho; David Shih; Betty Luu; Adrian Dubuc; Paul A. Northcott; Ulrich Schüller; Sridharan Gururangan; Roger E. McLendon; Darell D. Bigner; Maryam Fouladi; Keith L. Ligon; Scott L. Pomeroy; Sandra E. Dunn; Joanna Triscott; Nada Jabado; Adam M. Fontebasso; David T. W. Jones; Marcel Kool; Matthias A. Karajannis; Sharon Gardner; David Zagzag; Sofia Nunes; José Pimentel; Jaume Mora; Eric Lipp

BACKGROUNDnRecurrent medulloblastoma is a therapeutic challenge because it is almost always fatal. Studies have confirmed that medulloblastoma consists of at least four distinct subgroups. We sought to delineate subgroup-specific differences in medulloblastoma recurrence patterns.nnnMETHODSnWe retrospectively identified a discovery cohort of all recurrent medulloblastomas at the Hospital for Sick Children (Toronto, ON, Canada) from 1994 to 2012 (cohort 1), and established molecular subgroups using a nanoString-based assay on formalin-fixed paraffin-embedded tissues or frozen tissue. The anatomical site of recurrence (local tumour bed or leptomeningeal metastasis), time to recurrence, and survival after recurrence were assessed in a subgroup-specific manner. Two independent, non-overlapping cohorts (cohort 2: samples from patients with recurrent medulloblastomas from 13 centres worldwide, obtained between 1991 and 2012; cohort 3: samples from patients with recurrent medulloblastoma obtained at the NN Burdenko Neurosurgical Institute [Moscow, Russia] between 1994 and 2011) were analysed to confirm and validate observations. When possible, molecular subgrouping was done on tissue obtained from both the initial surgery and at recurrence.nnnRESULTSnCohort 1 consisted of 30 patients with recurrent medulloblastomas; nine with local recurrences, and 21 with metastatic recurrences. Cohort 2 consisted of 77 patients and cohort 3 of 96 patients with recurrent medulloblastoma. Subgroup affiliation remained stable at recurrence in all 34 cases with available matched primary and recurrent pairs (five pairs from cohort 1 and 29 pairs from cohort 2 [15 SHH, five group 3, 14 group 4]). This finding was validated in 17 pairs from cohort 3. When analysed in a subgroup-specific manner, local recurrences in cohort 1 were more frequent in SHH tumours (eight of nine [89%]) and metastatic recurrences were more common in group 3 and group 4 tumours (17 of 20 [85%] with one WNT, p=0·0014, local vs metastatic recurrence, SHH vs group 3 vs group 4). The subgroup-specific location of recurrence was confirmed in cohort 2 (p=0·0013 for local vs metastatic recurrence, SHH vs group 3 vs group 4,), and cohort 3 (p<0·0001). Treatment with craniospinal irradiation at diagnosis was not significantly associated with the anatomical pattern of recurrence. Survival after recurrence was significantly longer in patients with group 4 tumours in cohort 1 (p=0·013) than with other subgroups, which was confirmed in cohort 2 (p=0·0075), but not cohort 3 (p=0·70).nnnINTERPRETATIONnMedulloblastoma does not change subgroup at the time of recurrence, reinforcing the stability of the four main medulloblastoma subgroups. Significant differences in the location and timing of recurrence across medulloblastoma subgroups have potential treatment ramifications. Specifically, intensified local (posterior fossa) therapy should be tested in the initial treatment of patients with SHH tumours. Refinement of therapy for patients with group 3 or group 4 tumours should focus on metastases.


Journal of Clinical Oncology | 2014

Cytogenetic Prognostication Within Medulloblastoma Subgroups

David Shih; Paul A. Northcott; Marc Remke; Andrey Korshunov; Vijay Ramaswamy; Marcel Kool; Betty Luu; Yuan Yao; Xin Wang; Adrian Dubuc; Livia Garzia; John Peacock; Stephen C. Mack; Xiaochong Wu; Adi Rolider; A. Sorana Morrissy; Florence M.G. Cavalli; David T. W. Jones; Karel Zitterbart; Claudia C. Faria; Ulrich Schüller; Leos Kren; Toshihiro Kumabe; Teiji Tominaga; Young Shin Ra; Miklós Garami; Péter Hauser; Jennifer A. Chan; Shenandoah Robinson; László Bognár

PURPOSEnMedulloblastoma comprises four distinct molecular subgroups: WNT, SHH, Group 3, and Group 4. Current medulloblastoma protocols stratify patients based on clinical features: patient age, metastatic stage, extent of resection, and histologic variant. Stark prognostic and genetic differences among the four subgroups suggest that subgroup-specific molecular biomarkers could improve patient prognostication.nnnPATIENTS AND METHODSnMolecular biomarkers were identified from a discovery set of 673 medulloblastomas from 43 cities around the world. Combined risk stratification models were designed based on clinical and cytogenetic biomarkers identified by multivariable Cox proportional hazards analyses. Identified biomarkers were tested using fluorescent in situ hybridization (FISH) on a nonoverlapping medulloblastoma tissue microarray (n = 453), with subsequent validation of the risk stratification models.nnnRESULTSnSubgroup information improves the predictive accuracy of a multivariable survival model compared with clinical biomarkers alone. Most previously published cytogenetic biomarkers are only prognostic within a single medulloblastoma subgroup. Profiling six FISH biomarkers (GLI2, MYC, chromosome 11 [chr11], chr14, 17p, and 17q) on formalin-fixed paraffin-embedded tissues, we can reliably and reproducibly identify very low-risk and very high-risk patients within SHH, Group 3, and Group 4 medulloblastomas.nnnCONCLUSIONnCombining subgroup and cytogenetic biomarkers with established clinical biomarkers substantially improves patient prognostication, even in the context of heterogeneous clinical therapies. The prognostic significance of most molecular biomarkers is restricted to a specific subgroup. We have identified a small panel of cytogenetic biomarkers that reliably identifies very high-risk and very low-risk groups of patients, making it an excellent tool for selecting patients for therapy intensification and therapy de-escalation in future clinical trials.


Acta Neuropathologica | 2013

TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma

Marc Remke; Vijaj Ramaswamy; John Peacock; David Shih; Christian Koelsche; Paul A. Northcott; Nadia Hill; Florence M.G. Cavalli; Marcel Kool; Xin Wang; Stephen C. Mack; Mark Barszczyk; Sorana Morrissy; Xiaochong Wu; Sameer Agnihotri; Betty Luu; David T. W. Jones; Livia Garzia; Adrian Dubuc; Nataliya Zhukova; Robert Vanner; Johan M. Kros; Pim J. French; Erwin G. Van Meir; Rajeev Vibhakar; Karel Zitterbart; Jennifer A. Chan; László Bognár; Almos Klekner; Boleslaw Lach

Telomerase reverse transcriptase (TERT) promoter mutations were recently shown to drive telomerase activity in various cancer types, including medulloblastoma. However, the clinical and biological implications of TERT mutations in medulloblastoma have not been described. Hence, we sought to describe these mutations and their impact in a subgroup-specific manner. We analyzed the TERT promoter by direct sequencing and genotyping in 466 medulloblastomas. The mutational distributions were determined according to subgroup affiliation, demographics, and clinical, prognostic, and molecular features. Integrated genomics approaches were used to identify specific somatic copy number alterations in TERT promoter-mutated and wild-type tumors. Overall, TERT promoter mutations were identified in 21xa0% of medulloblastomas. Strikingly, the highest frequencies of TERT mutations were observed in SHH (83xa0%; 55/66) and WNT (31xa0%; 4/13) medulloblastomas derived from adult patients. Group 3 and Group 4 harbored this alteration in <5xa0% of cases and showed no association with increased patient age. The prognostic implications of these mutations were highly subgroup-specific. TERT mutations identified a subset with good and poor prognosis in SHH and Group 4 tumors, respectively. Monosomy 6 was mostly restricted to WNT tumors without TERT mutations. Hallmark SHH focal copy number aberrations and chromosome 10q deletion were mutually exclusive with TERT mutations within SHH tumors. TERT promoter mutations are the most common recurrent somatic point mutation in medulloblastoma, and are very highly enriched in adult SHH and WNT tumors. TERT mutations define a subset of SHH medulloblastoma with distinct demographics, cytogenetics, and outcomes.


Cancer Cell | 2017

Intertumoral Heterogeneity within Medulloblastoma Subgroups

Florence M.G. Cavalli; Marc Remke; Ladislav Rampasek; John Peacock; David Shih; Betty Luu; Livia Garzia; Jonathon Torchia; Carolina Nör; A. Sorana Morrissy; Sameer Agnihotri; Yuan Yao Thompson; Claudia M. Kuzan-Fischer; Hamza Farooq; Keren Isaev; Craig Daniels; Byung Kyu Cho; Seung Ki Kim; Kyu Chang Wang; Ji Yeoun Lee; Wieslawa A. Grajkowska; Marta Perek-Polnik; Alexandre Vasiljevic; Cécile Faure-Conter; Anne Jouvet; Caterina Giannini; Amulya A. Nageswara Rao; Kay Ka Wai Li; Ho Keung Ng; Charles G. Eberhart

While molecular subgrouping has revolutionized medulloblastoma classification, the extent of heterogeneity within subgroups is unknown. Similarity network fusion (SNF) applied to genome-wide DNA methylation and gene expression data across 763 primary samples identifies very homogeneous clusters of patients, supporting the presence of medulloblastoma subtypes. After integration of somatic copy-number alterations, and clinical features specific to each cluster, we identify 12 different subtypes of medulloblastoma. Integrative analysis using SNF further delineates group 3 from group 4 medulloblastoma, which is not as readily apparent through analyses of individual data types. Two clear subtypes of infants with Sonic Hedgehog medulloblastoma with disparate outcomes and biology are identified. Medulloblastoma subtypes identified through integrative clustering have important implications for stratification of future clinical trials.


Lancet Oncology | 2015

Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysis

Jonathon Torchia; Daniel Picard; Lucie Lafay-Cousin; Cynthia Hawkins; Seung Ki Kim; Louis Letourneau; Young Shin Ra; King Ching Ho; Tiffany Chan; Patrick Sin-Chan; Christopher Dunham; Stephen Yip; Ho Keung Ng; Jian Qiang Lu; Steffen Albrecht; José Pimentel; Jennifer A. Chan; Gino R. Somers; Maria Zielenska; Claudia C. Faria; Lucia Roque; Berivan Baskin; Diane K. Birks; Nick Foreman; Douglas Strother; Almos Klekner; Miklós Garami; Péter Hauser; Tibor Hortobágyi; László Bognár

BACKGROUNDnRhabdoid brain tumours, also called atypical teratoid rhabdoid tumours, are lethal childhood cancers with characteristic genetic alterations of SMARCB1/hSNF5. Lack of biological understanding of the substantial clinical heterogeneity of these tumours restricts therapeutic advances. We integrated genomic and clinicopathological analyses of a cohort of patients with atypical teratoid rhabdoid tumours to find out the molecular basis for clinical heterogeneity in these tumours.nnnMETHODSnWe obtained 259 rhabdoid tumours from 37 international institutions and assessed transcriptional profiles in 43 primary tumours and copy number profiles in 38 primary tumours to discover molecular subgroups of atypical teratoid rhabdoid tumours. We used gene and pathway enrichment analyses to discover group-specific molecular markers and did immunohistochemical analyses on 125 primary tumours to evaluate clinicopathological significance of molecular subgroup and ASCL1-NOTCH signalling.nnnFINDINGSnTranscriptional analyses identified two atypical teratoid rhabdoid tumour subgroups with differential enrichment of genetic pathways, and distinct clinicopathological and survival features. Expression of ASCL1, a regulator of NOTCH signalling, correlated with supratentorial location (p=0·004) and superior 5-year overall survival (35%, 95% CI 13-57, and 20%, 6-34, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·033) in 70 patients who received multimodal treatment. ASCL1 expression also correlated with superior 5-year overall survival (34%, 7-61, and 9%, 0-21, for ASCL1-positive and ASCL1-negative tumours, respectively; p=0·001) in 39 patients who received only chemotherapy without radiation. Cox hazard ratios for overall survival in patients with differential ASCL1 enrichment treated with chemotherapy with or without radiation were 2·02 (95% CI 1·04-3·85; p=0·038) and 3·98 (1·71-9·26; p=0·001). Integrated analyses of molecular subgroupings with clinical prognostic factors showed three distinct clinical risk groups of tumours with different therapeutic outcomes.nnnINTERPRETATIONnAn integration of clinical risk factors and tumour molecular groups can be used to identify patients who are likely to have improved long-term radiation-free survival and might help therapeutic stratification of patients with atypical teratoid rhabdoid tumours.nnnFUNDINGnC17 Research Network, Genome Canada, b.r.a.i.n.child, Mitchell Duckman, Tal Doron and Suri Boon foundations.


Journal of Neurosurgery | 2008

Genetic alterations in a papillary glioneuronal tumor

Claudia C. Faria; José Miguéns; João Antunes; Cândida Barroso; José Pimentel; Maria do Carmo Martins; Vasco Moura‐Nunes; Lúcia Roque

Papillary glioneuronal tumors (PGNTs) are rare lesions of the central nervous system, and no information exists on the genetic alterations in these neoplasms. The authors report on such a case in a child. Genetic studies revealed that the tumor was characterized by gains and structural alterations involving only chromosome 7 with breakpoints at 7p22. By using comparative genomic hybridization, the authors observed a high-level amplification region at 7p14~q12. Fluorescence in situ hybridization with a probe for EGFR revealed that this gene was not amplified. Similar to other patients with PGNTs, the patient in the present case fared well. From a genetic point of view the data in the present case are in accordance with previous findings of EGFR amplifications as uncommon in low-grade gliomas and gangliogliomas. Recurrent rearrangements of chromosome 7 have been noted in other mixed glioneuronal tumors. The data in this case suggest that genes located at chromosome 7 can also be involved in the pathogenesis of PGNT. In clinical terms it will be especially important to corroborate, through the analysis of further cases, the involvement of the chromosome 7p22 locus, a region where glial and neuronal linked genes (RAC1 and NXPH1) are known to be located.


Journal of Neurosurgery | 2010

Pediatric brain tumors: genetics and clinical outcome.

Claudia C. Faria; José Miguéns; João Antunes; Duarte Salgado; Sofia Nunes; Cândida Barroso; Maria do Carmo Martins; Vasco Moura Nunes; Lúcia Roque

OBJECTnIn this paper the authors goal was to investigate the genetic characteristics of primary brain tumors in children and determine their influence on clinical outcome.nnnMETHODSnThe authors performed high-resolution comparative genomic hybridization studies in 14 low-grade and 12 high-grade brain neoplasms in 26 children who underwent surgery between 2005 and 2007.nnnRESULTSnComplex comparative genomic hybridization alterations were observed in 2 (14.3%) of the 14 lowgrade lesions and in 8 (66.6%) of the 12 high-grade lesions. High-level amplifications of DNA were detected in 3 cases, namely in a desmoplastic medulloblastoma where a c-Myc amplification was found. Gains of 1q were detected in 2 low-grade and 6 high-grade lesions that were classified as ependymomas, astrocytomas, oligodendrogliomas, oligoastrocytomas, and gangliogliomas. When the authors correlated genetics with outcome, they noted that among the low-grade neoplasms only the 2 patients who presented with complex comparative genomic hybridization alterations had to undergo reoperation because of recurrent disease. The patient with c-Myc amplification died of progressive disease. Gains of 1q were only observed in tumor cases with progressive disease.nnnCONCLUSIONSnComplex genetic alterations are indicative of a less favorable outcome in low-grade tumors. In these cases, closer follow-up should be pursued. The authors corroborate that c-Myc amplification is a marker of poor prognosis in medulloblastomas. In this study, they were able to verify that a 1q gain correlates with a poor clinical outcome, independent of tumor grade and histological type. The authors propose that it may be considered a common marker of poor prognosis in these neoplasms.


Pediatric Blood & Cancer | 2014

Duration of the pre-diagnostic interval in medulloblastoma is subgroup dependent.

Vijay Ramaswamy; Marc Remke; David Shih; Xin Wang; Paul A. Northcott; Claudia C. Faria; Charles Raybaud; Uri Tabori; Cynthia Hawkins; James T. Rutka; Michael D. Taylor; Eric Bouffet

Children presenting with medulloblastoma have a wide range of initial presenting symptoms. However, the influence of underlying tumor biology on the initial presentation of medulloblastoma is currently unknown. In light of the recent discovery of distinct medulloblastoma subgroups, we sought to define the initial presentation of childhood medulloblastoma in a subgroup specific manner.


Journal of Neurosurgery | 2011

Epigenetic mechanisms regulating neural development and pediatric brain tumor formation

Claudia C. Faria; James T. Rutka; Christian A. Smith; Paul N. Kongkham

Pediatric brain tumors are the leading cause of cancer-related death in children, and among them, embryonal tumors represent the largest group with an associated poor prognosis and long-term morbidity for survivors. The field of cancer epigenetics has emerged recently as an important area of investigation and causation of a variety of neoplasms, and is defined as alterations in gene expression without changes in DNA sequence. The best studied epigenetic modifications are DNA methylation, histone modifications, and RNA-based mechanisms. These modifications play an important role in normal development and differentiation but their dysregulation can lead to altered gene function and cancer. In this review the authors describe the mechanisms of normal epigenetic regulation, how they interplay in neuroembryogenesis, and how these can cause brain tumors in children when dysregulated. The potential use of epigenetic markers to design more effective treatment strategies for children with malignant brain tumors is also discussed.

Collaboration


Dive into the Claudia C. Faria's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen C. Mack

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Wang

University of Toronto

View shared research outputs
Researchain Logo
Decentralizing Knowledge