Claudia C. Häse
Oregon State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia C. Häse.
Antimicrobial Agents and Chemotherapy | 2002
Pavel Dibrov; Judith Dzioba; Khoosheh K. Gosink; Claudia C. Häse
ABSTRACT Although the antimicrobial effects of silver salts were noticed long ago, the molecular mechanism of the bactericidal action of Ag+ in low concentrations has not been elucidated. Here, we show that low concentrations of Ag+ induce a massive proton leakage through the Vibrio cholerae membrane, which results in complete deenergization and, with a high degree of probability, cell death.
Microbiology and Molecular Biology Reviews | 2001
Claudia C. Häse; Natalie D. Fedorova; Michael Y. Galperin; Pavel Dibrov
SUMMARY Analysis of the bacterial genome sequences shows that many human and animal pathogens encode primary membrane Na+ pumps, Na+-transporting dicarboxylate decarboxylases or Na+-translocating NADH:ubiquinone oxidoreductase, and a number of Na+-dependent permeases. This indicates that these bacteria can utilize Na+ as a coupling ion instead of or in addition to the H+ cycle. This capability to use a Na+ cycle might be an important virulence factor for such pathogens as Vibrio cholerae, Neisseria meningitidis, Salmonella enterica serovar Typhi, and Yersinia pestis. In Treponema pallidum, Chlamydia trachomatis, and Chlamydia pneumoniae, the Na+ gradient may well be the only energy source for secondary transport. A survey of preliminary genome sequences of Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans, and Treponema denticola indicates that these oral pathogens also rely on the Na+ cycle for at least part of their energy metabolism. The possible roles of the Na+ cycling in the energy metabolism and pathogenicity of these organisms are reviewed. The recent discovery of an effective natural antibiotic, korormicin, targeted against the Na+-translocating NADH:ubiquinone oxidoreductase, suggests a potential use of Na+ pumps as drug targets and/or vaccine candidates. The antimicrobial potential of other inhibitors of the Na+ cycle, such as monensin, Li+ and Ag+ ions, and amiloride derivatives, is discussed.
Diseases of Aquatic Organisms | 2008
Ralph Elston; Hiroaki Hasegawa; Karen L. Humphrey; Ildiko K. Polyak; Claudia C. Häse
During 2006 and 2007, we documented the re-emergence of severe episodes of vibriosis caused by Vibrio tubiashii in shellfish hatcheries on the west coast of North America. Lost larval and juvenile production included 3 previously undescribed hosts, Pacific (Crassostrea gigas) and Kumamoto (C. sikamea) oysters and geoduck clams Panope abrupta, with a 2007 decline in larval oyster production of approximately 59% in one hatchery. Losses of larval and juvenile bivalves were linked to V. tubiashii blooms in the coastal environment, which were associated with the apparent mixing of unusually warm surface seawater and intermittently upwelled cooler, nutrient- and Vibrio spp.- enriched seawater. The ocean temperature elevation anomaly in 2007 was not clearly linked to an El Niño event, as was a similar episode in 1998. Concentrations of the dominant shellfish-pathogenic vibrios were as high as 1.6 x 10(5) cfu ml(-1) in the cold, upwelled water. The bacteria possessed the genes coding for a protease and hemolysin described for V. tubiashii, and pathogenic isolates secreted these peptides. Lesions resulting from a classic invasive disease and a toxigenic noninvasive disease occurred in oyster and geoduck clam larvae. Management and prevention require reduction of incoming concentrations of the bacteria, reduction of contamination in water and air supplies and in stock chemical solutions, removal of bacterial toxins, and interruption of the cycle of bacterial amplification in the hatchery and in microalgal food supplies.
Journal of Bacteriology | 2000
Khoosheh K. Gosink; Claudia C. Häse
Bacterial flagella are powered by a motor that converts a transmembrane electrochemical potential of either H(+) or Na(+) into mechanical work. In Escherichia coli, the MotA and MotB proteins form the stator and function in proton translocation, whereas the FliG protein is located on the rotor and is involved in flagellar assembly and torque generation. The sodium-driven polar flagella of Vibrio species contain homologs of MotA and MotB, called PomA and PomB, and also contain two other membrane proteins called MotX and MotY, which are essential for motor rotation and that might also function in ion conduction. Deletions in pomA, pomB, motX, or motY in Vibrio cholerae resulted in a nonmotile phenotype, whereas deletion of fliG gave a nonflagellate phenotype. fliG genes on plasmids complemented fliG-null strains of the parent species but not fliG-null strains of the other species. FliG-null strains were complemented by chimeric FliG proteins in which the C-terminal domain came from the other species, however, implying that the C-terminal part of FliG can function in conjunction with the ion-translocating components of either species. A V. cholerae strain deleted of pomA, pomB, motX, and motY became weakly motile when the E. coli motA and motB genes were introduced on a plasmid. Like E. coli, but unlike wild-type V. cholerae, motility of some V. cholerae strains containing the hybrid motor was inhibited by the protonophore carbonyl cyanide m-chlorophenylhydrazone under neutral as well as alkaline conditions but not by the sodium motor-specific inhibitor phenamil. We conclude that the E. coli proton motor components MotA and MotB can function in place of the motor proteins of V. cholerae and that the hybrid motors are driven by the proton motive force.
Applied and Environmental Microbiology | 2008
Hiroaki Hasegawa; Erin J. Lind; Markus A. Boin; Claudia C. Häse
ABSTRACT Vibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors. Culture supernatants of V. tubiashii have been shown to be toxic to oyster larvae and were reported to contain a metalloprotease and a cytolysin/hemolysin. However, the structural genes responsible for these proteins have yet to be identified, and it is uncertain which extracellular products play a role in pathogenicity. We investigated the effects of the metalloprotease and hemolysin secreted by V. tubiashii on its ability to kill Pacific oyster (Crassostrea gigas) larvae. While V. tubiashii supernatants treated with metalloprotease inhibitors severely reduced the toxicity to oyster larvae, inhibition of the hemolytic activity did not affect larval toxicity. We identified structural genes of V. tubiashii encoding a metalloprotease (vtpA) and a hemolysin (vthA). Sequence analyses revealed that VtpA shared high homology with metalloproteases from a variety of Vibrio species, while VthA showed high homology only to the cytolysin/hemolysin of Vibrio vulnificus. Compared to the wild-type strain, a VtpA mutant of V. tubiashii not only produced reduced amounts of protease but also showed decreased toxicity to C. gigas larvae. Vibrio cholerae strains carrying the vtpA or vthA gene successfully secreted the heterologous protein. Culture supernatants of V. cholerae carrying vtpA but not vthA were highly toxic to Pacific oyster larvae. Together, these results suggest that the V. tubiashii extracellular metalloprotease is important in its pathogenicity to C. gigas larvae.
Journal of Bacteriology | 2002
Khoosheh K. Gosink; Reiji Kobayashi; Ikuro Kawagishi; Claudia C. Häse
The Vibrio cholerae genome revealed the presence of multiple sets of chemotaxis genes, including three cheA gene homologs. We found that the cheA-2, but not cheA-1 or cheA-3, gene is essential for chemotaxis under standard conditions. Loss of chemotaxis had no effect on virulence factor expression in vitro.
Journal of Bacteriology | 2005
Akihiro Hyakutake; Michio Homma; Melissa J. Austin; Markus A. Boin; Claudia C. Häse; Ikuro Kawagishi
Vibrio cholerae has three sets of chemotaxis (Che) proteins, including three histidine kinases (CheA) and four response regulators (CheY) that are encoded by three che gene clusters. We deleted the cheY genes individually or in combination and found that only the cheY3 deletion impaired chemotaxis, reinforcing the previous conclusion that che cluster II is involved in chemotaxis. However, this does not exclude the involvement of the other clusters in chemotaxis. In other bacteria, phospho-CheY binds directly to the flagellar motor to modulate its rotation, and CheY overexpression, even without CheA, causes extremely biased swimming behavior. We reasoned that a V. cholerae CheY homolog, if it directly controls flagellar rotation, should also induce extreme swimming behavior when overproduced. This was the case for CheY3 (che cluster II). However, no other CheY homolog, including the putative CheY (CheY0) protein encoded outside the che clusters, affected swimming, demonstrating that these CheY homologs cannot act directly on the flagellar motor. CheY4 very slightly enhanced the spreading of an Escherichia coli cheZ mutant in semisolid agar, raising the possibility that it can affect chemotaxis by removing a phosphoryl group from CheY3. We also found that V. cholerae CheY3 and E. coli CheY are only partially exchangeable. Mutagenic analyses suggested that this may come from coevolution of the interacting pair of proteins, CheY and the motor protein FliM. Taken together, it is likely that the principal roles of che clusters I and III as well as cheY0 are to control functions other than chemotaxis.
Journal of Molecular Microbiology and Biotechnology | 2009
Judith Dzioba-Winogrodzki; Olga Winogrodzki; Terry A. Krulwich; Markus A. Boin; Claudia C. Häse; Pavel Dibrov
The mrp operon from Vibrio cholerae encoding a putative multisubunit Na+/H+ antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na+ and Li+ as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li+, Na+, and K+ ions in pH-dependent manner with maximal activity at pH 9.0–9.5. Exchange was electrogenic (more than one H+ translocated per cation moved in opposite direction). The apparent Km at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li+, Na+, and K+, respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems.
Applied and Environmental Microbiology | 2015
Gary P. Richards; Michael A. Watson; David S. Needleman; Karlee M. Church; Claudia C. Häse
ABSTRACT Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio coralliilyticus, a well-known coral pathogen, has recently been shown to elicit mortality in fish and shellfish. Several strains of V. coralliilyticus, such as ATCC 19105 and Pacific isolates RE22 and RE98, were misidentified as V. tubiashii until recently. We compared the mortalities caused by two V. tubiashii and four V. coralliilyticus strains in Eastern and Pacific oyster larvae. The 50% lethal dose (LD50) of V. coralliilyticus in Eastern oysters (defined here as the dose required to kill 50% of the population in 6 days) ranged from 1.1 × 104 to 3.0 × 104 CFU/ml seawater; strains RE98 and RE22 were the most virulent. This study shows that V. coralliilyticus causes mortality in Eastern oyster larvae. Results for Pacific oysters were similar, with LD50s between 1.2 × 104 and 4.0 × 104 CFU/ml. Vibrio tubiashii ATCC 19106 and ATCC 19109 were highly infectious toward Eastern oyster larvae but were essentially nonpathogenic toward healthy Pacific oyster larvae at dosages of ≥1.1 × 104 CFU/ml. These data, coupled with the fact that several isolates originally thought to be V. tubiashii are actually V. coralliilyticus, suggest that V. coralliilyticus has been a more significant pathogen for larval bivalve shellfish than V. tubiashii, particularly on the U.S. West Coast, contributing to substantial hatchery-associated morbidity and mortality in recent years.
Journal of Bacteriology | 2001
Igor I. Brown; Claudia C. Häse
Surface translocation has been described in a large variety of microorganisms, including some gram-negative enteric bacteria. Here, we describe the novel observation of the flagellum-independent migration of Vibrio cholerae and Escherichia coli on semisolid surfaces with remarkable speeds. Important aspects of this motility are the form of inoculation, the medium composition, and the use of agarose rather than agar. Mutations in several known regulatory or surface structure proteins, such as ToxR, ToxT, TCP, and PilA, did not affect migration, whereas a defect in lipopolysaccharide biosynthesis prevented translocation. We propose that the observed surface migration is an active process, since heat, protease, or chloramphenicol treatments of the cells have strong negative effects on this phenotype. Furthermore, several V. cholerae strains strongly expressing the hemagglutinin/protease but not their isogenic hap-negative mutants, lacked the ability of surface motility, and the treatment of migrating strains with culture supernatants from hap strains but not hap-null strains prevented surface translocation.