Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Chalk is active.

Publication


Featured researches published by Claudia Chalk.


Nature | 2014

Pulmonary macrophage transplantation therapy

Takuji Suzuki; Paritha Arumugam; Takuro Sakagami; Nico Lachmann; Claudia Chalk; Anthony Sallese; Shuichi Abe; Cole Trapnell; Brenna Carey; Thomas Moritz; Punam Malik; Carolyn Lutzko; Robert E. Wood; Bruce C. Trapnell

Bone-marrow transplantation is an effective cell therapy but requires myeloablation, which increases infection risk and mortality. Recent lineage-tracing studies documenting that resident macrophage populations self-maintain independently of haematological progenitors prompted us to consider organ-targeted, cell-specific therapy. Here, using granulocyte–macrophage colony-stimulating factor (GM-CSF) receptor-β-deficient (Csf2rb−/−) mice that develop a myeloid cell disorder identical to hereditary pulmonary alveolar proteinosis (hPAP) in children with CSF2RA or CSF2RB mutations, we show that pulmonary macrophage transplantation (PMT) of either wild-type or Csf2rb-gene-corrected macrophages without myeloablation was safe and well-tolerated and that one administration corrected the lung disease, secondary systemic manifestations and normalized disease-related biomarkers, and prevented disease-specific mortality. PMT-derived alveolar macrophages persisted for at least one year as did therapeutic effects. Our findings identify mechanisms regulating alveolar macrophage population size in health and disease, indicate that GM-CSF is required for phenotypic determination of alveolar macrophages, and support translation of PMT as the first specific therapy for children with hPAP.


Infection and Immunity | 2003

Nonpathogenic Escherichia coli Can Contribute to the Production of Shiga Toxin

Shantini D. Gamage; Jane E. Strasser; Claudia Chalk; Alison A. Weiss

ABSTRACT The food-borne pathogen, Escherichia coli O157:H7, has been associated with gastrointestinal disease and the life-threatening sequela hemolytic uremic syndrome. The genes for the virulence factor, Shiga toxin 2 (Stx2), in E. coli O157:H7 are encoded on a temperate bacteriophage under the regulation of the late gene promoter. Induction of the phage lytic cycle is required for toxin synthesis and release. We investigated the hypothesis that nonpathogenic E. coli could amplify Stx2 production if infected with the toxin-encoding phage. Toxin-encoding phage were incubated with E. coli that were either susceptible or resistant to the phage. The addition of phage to phage-susceptible bacteria resulted in up to 40-fold more toxin than a pure culture of lysogens, whereas the addition of phage to phage-resistant bacteria resulted in significantly reduced levels of toxin. Intestinal E. coli isolates incubated with Shiga toxin-encoding phage produced variable amounts of toxin. Of 37 isolates, 3 produced significantly more toxin than was present in the inoculum, and 1 fecal isolate appeared to inactivate the toxin. Toxin production in the intestine was assessed in a murine model. Fecal toxin recovery was significantly reduced when phage-resistant E. coli was present. These results suggest that the susceptibility of the intestinal flora to the Shiga toxin phage could exert either a protective or an antagonistic influence on the severity of disease by pathogens with phage-encoded Shiga toxin. Toxin production by intestinal flora may represent a novel strategy of pathogenesis.


American Journal of Respiratory and Critical Care Medicine | 2010

Hereditary Pulmonary Alveolar Proteinosis: Pathogenesis, Presentation, Diagnosis, and Therapy

Takuji Suzuki; Takuro Sakagami; Lisa R. Young; Brenna Carey; Robert E. Wood; Maurizio Luisetti; Susan E. Wert; Bruce K. Rubin; Katharine Kevill; Claudia Chalk; Jeffrey A. Whitsett; Carrie Stevens; Lawrence M. Nogee; Ilaria Campo; Bruce C. Trapnell

RATIONALE We identified a 6-year-old girl with pulmonary alveolar proteinosis (PAP), impaired granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor function, and increased GM-CSF. OBJECTIVES Increased serum GM-CSF may be useful to identify individuals with PAP caused by GM-CSF receptor dysfunction. METHODS We screened 187 patients referred to us for measurement of GM-CSF autoantibodies to diagnose autoimmune PAP. Five were children with PAP and increased serum GM-CSF but without GM-CSF autoantibodies or any disease causing secondary PAP; all were studied with family members, subsequently identified patients, and controls. MEASUREMENT AND MAIN RESULTS Eight children (seven female, one male) were identified with PAP caused by recessive CSF2RA mutations. Six presented with progressive dyspnea of insidious onset at 4.8 ± 1.6 years and two were asymptomatic at ages 5 and 8 years. Radiologic and histopathologic manifestations were similar to those of autoimmune PAP. Molecular analysis demonstrated that GM-CSF signaling was absent in six and severely reduced in two patients. The GM-CSF receptor β chain was detected in all patients, whereas the α chain was absent in six and abnormal in two, paralleling the GM-CSF signaling defects. Genetic analysis revealed multiple distinct CSF2RA abnormalities, including missense, duplication, frameshift, and nonsense mutations; exon and gene deletion; and cryptic alternative splicing. All symptomatic patients responded well to whole-lung lavage therapy. CONCLUSIONS CSF2RA mutations cause a genetic form of PAP presenting as insidious, progressive dyspnea in children that can be diagnosed by a combination of characteristic radiologic findings and blood tests and treated successfully by whole-lung lavage.


Journal of Virology | 2005

Clearance of Herpes Simplex Virus Type 2 by CD8+ T Cells Requires Gamma Interferon and either Perforin- or Fas-Mediated Cytolytic Mechanisms

Melanie E. Dobbs; Jane Strasser; Chin Fun Chu; Claudia Chalk; Gregg N. Milligan

ABSTRACT The T-cell-mediated resolution of herpes simplex virus type 2 (HSV-2) genital infections is not fully understood. In these studies, the mechanisms by which CD8+ T cells clear virus from the genital epithelium were examined. Ovalbumin (OVA)-specific CD8+ T cells from OT-I transgenic mice cleared a thymidine kinase-deficient, ovalbumin-expressing HSV-2 virus (HSV-2 tk− OVA) from the genital epithelium of recipient mice, and clearance was abrogated by in vivo neutralization of gamma interferon (IFN-γ). Further, CD8+ OT-I T cells deficient in IFN-γ were unable to clear HSV-2 tk− OVA from the vaginal epithelium. The requirement for cytolytic mechanisms in HSV-2 tk− OVA clearance was tested in radiation chimeras by adoptive transfer of wild-type or perforin-deficient OT-I T cells to irradiated Fas-defective or wild-type recipients. Although a dramatic decrease in viral load was observed early after challenge with HSV-2 tk− OVA, full resolution of the infection was not achieved in recipients lacking both perforin- and Fas-mediated cytolytic pathways. These results suggest that IFN-γ was responsible for an early rapid decrease in HSV-2 virus titer. However, either perforin- or Fas-mediated cytolytic mechanisms were required to achieve complete clearance of HSV-2 from the genital epithelium.


European Respiratory Journal | 2011

Hereditary pulmonary alveolar proteinosis caused by recessive CSF2RB mutations

Takuji Suzuki; Bruno Maranda; Takuro Sakagami; Catellier P; Couture Cy; Brenna Carey; Claudia Chalk; Bruce C. Trapnell

To the Editors: Pulmonary alveolar proteinosis (PAP) is a syndrome characterised by accumulation of surfactant in alveoli resulting in respiratory insufficiency 1. Surfactant homeostasis is critical for lung function and is tightly regulated, in part, by pulmonary granulocyte-macrophage colony-stimulating factor (GM-CSF), which is required for surfactant clearance by alveolar macrophages 2 and alveolar macrophage maturation 1. The effects of GM-CSF are mediated by cell-surface receptors composed of GM-CSF-binding α-chains and affinity-enhancing β-chains (encoded by CSF2RA and CSF2RB , respectively) 3. Ligand binding activates signalling via multiple pathways including the signal transducer and activator of phosphorylation (STAT)5 4. Disruption of GM-CSF signalling causes PAP by impairing surfactant catabolism in alveolar macrophages 1. In 90% of patients, PAP is caused by neutralising GM-CSF auto-antibodies 5, 6. Through the Rare Lung Diseases Network global PAP detection programme, we identified PAP caused by recessive CSF2RA mutations and developed novel diagnostic methods to identify patients with PAP caused by GM-CSF receptor dysfunction 4, 7. Herein, we report a case of hereditary PAP caused by disruption of GM-CSF receptor β-chain function. A previously healthy 9-yr-old female presented with bilateral pneumonia, followed 3 months later by progressive dyspnoea of insidious onset. The diagnosis of PAP was suggested by chest radiograph findings, high-resolution computed tomography and bronchoalveolar cytology, and was confirmed by surgical lung biopsy. Pulmonary histopathology was typical of primary PAP (fig. 1) and she was successfully treated by serial whole lung lavage therapy. Details of the case history are included in the online supplement. A GM-CSF auto-antibody test was negative and the serum GM-CSF level was increased (25.9 pg·mL−1) suggesting GM-CSF receptor dysfunction as the molecular basis of PAP 4, 7. A molecular evaluation was undertaken and included GM-CSF receptor detection, STAT-5 phosphorylation, CSF2RA …


Infection and Immunity | 2006

Commensal Bacteria Influence Escherichia coli O157:H7 Persistence and Shiga Toxin Production in the Mouse Intestine

Shantini D. Gamage; Angela K. Patton; Jane E. Strasser; Claudia Chalk; Alison A. Weiss

ABSTRACT The presence of commensal flora reduced colonization of Escherichia coli O157:H7 and production of Shiga toxin (Stx) in the murine intestine. Stx production was not detected in mice colonized with E. coli that were resistant to the Shiga toxin phage, but it was detected in mice colonized with phage-susceptible E. coli.


Journal of Immunological Methods | 2014

Standardized serum GM-CSF autoantibody testing for the routine clinical diagnosis of autoimmune pulmonary alveolar proteinosis.

Kanji Uchida; Koh Nakata; Brenna Carey; Claudia Chalk; Takuji Suzuki; Takuro Sakagami; Diana Koch; Carrie Stevens; Yoshikazu Inoue; Yoshitsugu Yamada; Bruce C. Trapnell

Autoantibodies against granulocyte/macrophage colony-stimulating factor (GMAbs) cause autoimmune pulmonary alveolar proteinosis (PAP) and measurement of the GMAb level in serum is now commonly used to identify this disease, albeit, in a clinical research setting. The present study was undertaken to optimize and standardize serum GMAb concentration testing using a GMAb enzyme-linked immunosorbent assay (GMAb ELISA) to prepare for its introduction into routine clinical use. The GMAb ELISA was evaluated using serum specimens from autoimmune PAP patients, healthy people, and GMAb-spiked serum from healthy people. After optimizing assay components and procedures, its accuracy, precision, reliability, sensitivity, specificity, and ruggedness were evaluated. The coefficient of variation in repeated measurements was acceptable (<15%) for well-to-well, plate-to-plate, day-to-day, and inter-operator variation, and was not affected by repeated freeze-thaw cycles of serum specimens or the reference standards, or by storage of serum samples at -80°C. The lower limit of quantification (LLOQ) of the PAP patient-derived polyclonal GMAb reference standard (PCRS) was 0.78ng/ml. Receiver operating characteristic curve analysis identified a serum GMAb level of 5μg/ml (based on PCRS) as the optimal cut off value for distinguishing autoimmune PAP serum from normal serum. A pharmaceutical-grade, monoclonal GMAb reference standard (MCRS) was developed as the basis of a new unit of measure for GMAb concentration: one International Unit (IU) of GMAb is equivalent to 1μg/ml of MCRS. The median [interquartile range] serum GMAb level was markedly higher in autoimmune PAP patients than in healthy people (21.54 [12.83-36.38] versus 0.08 [0.05-0.14] IU; n=56, 38; respectively; P<0.0001). Results demonstrate that serum GMAb measurement using the GMAb ELISA was accurate, precise, reliable, had an acceptable LLOQ, and could be accurately expressed in standardized units. These findings support the use of this GMAb ELISA for the routine clinical diagnosis of autoimmune PAP and introduce a new unit of measure to enable standardized reporting of serum GMAb data from different laboratories.


The American Journal of Gastroenterology | 2013

Granulocyte macrophage colony-stimulating factor auto-antibodies and disease relapse in inflammatory bowel disease.

Jan Däbritz; Erin Bonkowski; Claudia Chalk; Bruce C. Trapnell; Jost Langhorst; Lee A. Denson; Dirk Foell

OBJECTIVES:Along with others, we have reported that neutralization of granulocyte macrophage colony-stimulating factor (GM-CSF) increases intestinal permeability and bacterial translocation, and reduces neutrophil bacterial killing and anti-microbial seroreactivity. The objective was to investigate the utility of serum GM-CSF auto-antibody (Ab) as a marker for confirmation of stable remission and prediction of relapses in patients with inflammatory bowel disease (IBD).METHODS:We consecutively included 181 adults and children with Crohns disease (CD, n=61) or ulcerative colitis (UC, n=120). Over a 3-year period, we collected 861 serum samples and 610 stool samples during regular follow-up visits. GM-CSF Abs and fecal S100 proteins were measured by an enzyme-linked immunoassay.RESULTS:Serum GM-CSF Ab levels correlated with disease activity, location, and extent. Time course analysis before and after relapse showed a clear increase of GM-CSF Ab concentrations up to 6 months before clinical relapse. At 1.7 μg/ml (CD) and 0.5 μg/ml (UC), the sensitivity and specificity of GM-CSF Ab for predicting relapse already 2–6 months earlier were 88% and 95% in CD and 62% and 68% in UC, respectively. A baseline GM-CSF Ab level of >1.7 μg/ml was significantly associated with relapse of CD within 18 months.CONCLUSIONS:As GM-CSF is required for myeloid cell antimicrobial functions and homeostatic responses to tissue injury, serum GM-CSF Ab levels might reflect the degree of bowel permeability and bacterial translocation. Therefore, GM-CSF Ab might identify IBD patients at risk of disease relapse at an early stage, which makes the test a potential tool for monitoring disease activity and optimizing therapy.


American Journal of Respiratory and Critical Care Medicine | 2013

Use of Induced Pluripotent Stem Cells to Recapitulate Pulmonary Alveolar Proteinosis Pathogenesis

Takuji Suzuki; Christopher N. Mayhew; Anthony Sallese; Claudia Chalk; Brenna Carey; Punam Malik; Robert E. Wood; Bruce C. Trapnell

RATIONALE In patients with pulmonary alveolar proteinosis (PAP) syndrome, disruption of granulocyte/macrophage colony-stimulating factor (GM-CSF) signaling is associated with pathogenic surfactant accumulation from impaired clearance in alveolar macrophages. OBJECTIVES The aim of this study was to overcome these barriers by using monocyte-derived induced pluripotent stem (iPS) cells to recapitulate disease-specific and normal macrophages. METHODS We created iPS cells from two children with hereditary PAP (hPAP) caused by recessive CSF2RA(R217X) mutations and three normal people, differentiated them into macrophages (hPAP-iPS-Mφs and NL-iPS-Mφs, respectively), and evaluated macrophage functions with and without gene-correction to restore GM-CSF signaling in hPAP-iPS-Mφs. MEASUREMENTS AND MAIN RESULTS Both hPAP and normal iPS cells had human embryonic stem cell-like morphology, expressed pluripotency markers, formed teratomas in vivo, had a normal karyotype, retained and expressed mutant or normal CSF2RA genes, respectively, and could be differentiated into macrophages with the typical morphology and phenotypic markers. Compared with normal, hPAP-iPS-Mφs had impaired GM-CSF receptor signaling and reduced GM-CSF-dependent gene expression, GM-CSF- but not M-CSF-dependent cell proliferation, surfactant clearance, and proinflammatory cytokine secretion. Restoration of GM-CSF receptor signaling corrected the surfactant clearance abnormality in hPAP-iPS-Mφs. CONCLUSIONS We used patient-specific iPS cells to accurately reproduce the molecular and cellular defects of alveolar macrophages that drive the pathogenesis of PAP in more than 90% of patients. These results demonstrate the critical role of GM-CSF signaling in surfactant homeostasis and PAP pathogenesis in humans and have therapeutic implications for hPAP.


Infection and Immunity | 2007

Comparative Analysis of the Abilities of Shiga Toxins 1 and 2 To Bind to and Influence Neutrophil Apoptosis

Michael J. Flagler; Jane E. Strasser; Claudia Chalk; Alison A. Weiss

ABSTRACT Hemolytic-uremic syndrome (HUS), the life-threatening complication following infection by the intestinal pathogen Escherichia coli O157:H7, is due to the ability of the pathogen to produce toxins in the Shiga toxin (Stx) family. Activated neutrophils are observed in HUS patients, yet it is unclear whether Stx exerts a direct effect on neutrophils or whether the toxin acts indirectly. The effect of Stx1 and Stx2 on human neutrophils was examined. Neither Stx1 nor Stx2 altered the rate of neutrophil apoptosis. Minimal binding of either toxin to neutrophils was observed, and the toxin was easily eluted from the cells. Stx1 and Stx2 were found to circulate in the plasma of mice following intravenous injection, and both toxins were cleared rapidly from the blood. Together these results suggest that neither Stx1 nor Stx2 interacts directly with neutrophils.

Collaboration


Dive into the Claudia Chalk's collaboration.

Top Co-Authors

Avatar

Bruce C. Trapnell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brenna Carey

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Takuji Suzuki

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lee A. Denson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erin Bonkowski

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Robert E. Wood

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Anthony Sallese

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ingrid Jurickova

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge