Claudia Colesie
Kaiserslautern University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Colesie.
The ISME Journal | 2014
Claudia Colesie; T. G. Allan Green; Ilka Haferkamp; Burkhard Büdel
Biological soil crusts (BSC) are the dominant functional vegetation unit in some of the harshest habitats in the world. We assessed BSC response to stress through changes in biotic composition, CO2 gas exchange and carbon allocation in three lichen-dominated BSC from habitats with different stress levels, two more extreme sites in Antarctica and one moderate site in Germany. Maximal net photosynthesis (NP) was identical, whereas the water content to achieve maximal NP was substantially lower in the Antarctic sites, this apparently being achieved by changes in biomass allocation. Optimal NP temperatures reflected local climate. The Antarctic BSC allocated fixed carbon (tracked using 14CO2) mostly to the alcohol soluble pool (low-molecular weight sugars, sugar alcohols), which has an important role in desiccation and freezing resistance and antioxidant protection. In contrast, BSC at the moderate site showed greater carbon allocation into the polysaccharide pool, indicating a tendency towards growth. The results indicate that the BSC of the more stressed Antarctic sites emphasise survival rather than growth. Changes in BSC are adaptive and at multiple levels and we identify benefits and risks attached to changing life traits, as well as describing the ecophysiological mechanisms that underlie them.
Antarctic Science | 2014
Claudia Colesie; Maxime Gommeaux; T. G. Allan Green; Burkhard Büdel
Abstract Biological soil crusts are associations of lichens, mosses, algae, cyanobacteria, microfungi and bacteria in different proportions forming a thin veneer within the top centimetres of soil surfaces. They occur in all biomes, but particularly in arid and semi-arid regions, even in the most extreme climates. They carry out crucial ecosystem functions, such as soil stabilization, influencing water and nutrient cycles, and contribute to the formation of microniches for heterotrophic life. In continental Antarctica especially, these roles are essential because no higher plants provide such ecosystem services. We provide a detailed description of biological soil crusts from Garwood Valley, McMurdo Dry Valleys region (78°S) and Diamond Hill (80°S) in the Darwin Mountains region. The coverage was low at 3.3% and 0.8% of the soil surface. At Garwood Valley the crusts were composed of green algal lichens, cyanobacteria, several species of green algae and the moss Hennediella heimii (Hedw.) R.H. Zander. Diamond Hill crusts appear to be unique in not having any species of cyanobacteria. Major parts are embedded in the soil, and their thickness correlates with higher chlorophyll contents, higher soil organic carbon and nitrogen, which are fundamental components of this species poor cold desert zone.
Archive | 2016
Leopoldo G. Sancho; Jayne Belnap; Claudia Colesie; Jose Raggio; Bettina Weber
The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multiscale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A microscale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The mesoscale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.
Polar Biology | 2014
Claudia Colesie; T. G. A. Green; Roman Türk; Ian D. Hogg; Leopoldo G. Sancho; Burkhard Büdel
AbstractAntarctica has several apparent advantages for the study of biodiversity change along latitudinal gradients including a relatively pristine environment and simple community structures. Published analyses for lichens and mosses show no apparent gradient in biodiversity along the western Ross Sea coast line, the longest ice-free area in Antarctica spanning 14° latitude. One suggestion is that the area remains poorly surveyed. Here, we combine available species lists from four sites along the coast with new own data from two additional sites [Taylor Valley (77°30′S) and Diamond Hill (79°S)]. We show a decline in total terrestrial biodiversity with latitude from Cape Hallett (72°S) to Diamond Hill. However, the southernmost site, the Queen Maud Mountains (84°S), is exceptional with almost the same diversity as Cape Hallett. A categorization of lichens according to their proposed ecology shows the proportion of tolerant species remains relatively constant. However, the absolute number of conformant species declines with latitude, again with a minimum at Diamond Hill. Similarity indices are low and not very different between sites with Diamond Hill being the exception with very few species. We suggest that terrestrial biodiversity best reflects microhabitat water availability rather than macroclimatic temperature changes and use climate data from Taylor Valley and Diamond Hill to support this suggestion. We propose that the importance of microhabitats and landscape location is one of several possible limitations to the application of bioclimatic modeling along the Ross sea coastline. In the absence of a definitive link between macroclimate and the biota, predicting the effects of climate changes will be more challenging.
Archive | 2014
Burkhard Büdel; Claudia Colesie
Biological soil crusts (BSC) live in the upper millimeters of the soil and are composed of bacteria, algae, fungi, lichens, and bryophytes in different proportions. They occur in arid environments of the Earths or wherever an arid microclimate is realized. BSCs increase soil stability, resistance to erosion, and soil fertility. While for single groups of soil inhabiting cryptogams (including bacteria) a number of studies exist, the concept of biological soil crusts is not well established for Antarctica yet. Here we summarize knowledge about Antarctic BSCs from our own work and from literature, the latter being especially searched for descriptions of photoautotrophic communities that can be interpreted as BSCs.
Arctic, Antarctic, and Alpine Research | 2016
Claudia Colesie; T. G. Allan Green; Jose Raggio; Burkhard Büdel
ABSTRACT Biological soil crusts (BSCs) are small-scale communities of lichens, mosses, algae, and cyanobacteria that cover much of the surface area in regions where vascular plant growth is restricted due to harsh environmental conditions, such as perpetually ice-free areas in terrestrial Antarctic environments and alpine areas above the tree line. To our knowledge, none of the available studies provides a direct Antarctic-alpine comparison of BSC activity periods and the water use, both key traits to understand their physiological behavior and therefore related growth and fitness. Here, activity patterns and water relations were studied at two sites, one in continental Antarctica (Garwood Valley 78°S) and one in the High Alps of Austria (Hochtor, Großglockner 2350m). BSCs in continental Antarctica were only rarely active, and if so, then during melt after snowfalls and by fog. In the Austrian Alps, BSCs were continuously active and additionally activated by rainfall, fog, and dew. Consequently, high alpine BSCs can be expected to have much higher photosynthetic productivity supporting higher growth rates than the same functional vegetation unit has in continental Antarctica.
Biology and Fertility of Soils | 2018
Gianmarco Mugnai; Federico Rossi; Vincent John Martin Noah Linus Felde; Claudia Colesie; Burkhard Büdel; Stephan Peth; Aaron Kaplan; Roberto De Philippis
Soil inoculation with cyanobacteria (cyanobacterization) is a biotechnological method widely studied to improve soil quality and productivity. During their growth on soil, cyanobacteria excrete exopolysaccharides (EPSs) which glue trichomes to soil particles, in a three-dimensional extracellular polymeric matrix. EPS productivity is an important screening parameter to select proficient inoculants and is affected by growth conditions and abiotic stresses. In this study, we evaluated the capability of the cyanobacterium Schizothrix cf. delicatissima AMPL0116 to form biocrusts when inoculated in sand microcosms under stressing conditions, and the characteristics of the synthesized polymeric matrix. In parallel, we evaluated the characteristics of exopolysaccharidic exudates of the strain when grown in liquid culture, under optimal growth setting. Our results pointed out at significant differences of the exopolymers produced in the two conditions in terms of monosaccharidic composition and molecular weight distribution, and proved the capability of S. cf. delicatissima AMPL0116 to form stable bioaggregates on sandy soils.
Polar Biology | 2018
Martin Rippin; Nadine Borchhardt; Laura Williams; Claudia Colesie; Patrick Jung; Burkhard Büdel; Ulf Karsten; Burkhard Becker
Biological soil crusts (BSCs) are key components of polar ecosystems. These complex communities are important for terrestrial polar habitats as they include major primary producers that fix nitrogen, prevent soil erosion and can be regarded as indicators for climate change. To study the genus richness of microalgae and Cyanobacteria in BSCs, two different methodologies were employed and the outcomes were compared: morphological identification using light microscopy and the annotation of ribosomal sequences taken from metatranscriptomes. The analyzed samples were collected from Ny-Ålesund, Svalbard, Norway, and the Juan Carlos I Antarctic Base, Livingston Island, Antarctica. This study focused on the following taxonomic groups: Klebsormidiophyceae, Chlorophyceae, Trebouxiophyceae, Xanthophyceae and Cyanobacteria. In total, combining both approaches, 143 and 103 genera were identified in the Arctic and Antarctic samples, respectively. Furthermore, both techniques concordantly determined 15 taxa in the Arctic and 7 taxa in the Antarctic BSC. In general, the molecular analysis indicated a higher microalgal and cyanobacterial genus richness (about 11 times higher) than the morphological approach. In terms of eukaryotic algae, the two sampling sites displayed comparable genus counts while the cyanobacterial genus richness was much higher in the BSC from Ny-Ålesund. For the first time, the presence of the genera Chloroidium, Ankistrodesmus and Dunaliella in polar regions was determined by the metatranscriptomic analysis. Overall, these findings illustrate that only the combination of morphological and molecular techniques, in contrast to one single approach, reveals higher genus richness for complex communities such as polar BSCs.
Archive | 2016
Claudia Colesie; Vincent John Martin Noah Linus Felde; Burkhard Büdel
The visible structure (>1 mm) of biocrusts is determined by both biotic and abiotic influences. First, the composing organisms and the various proportions of them have significant influence on the macrostructure of a biocrust. Second, physical parameters, such as climate, and physical and chemical soil properties impact biocrust macrostructure. In this chapter, the difference between abiotic and biotic surface crusting and influences on biocrust structure are discussed. Additionally, we summarize different approaches that were used to classify biocrusts.
Biodiversity and Conservation | 2014
Burkhard Büdel; Claudia Colesie; T. G. Allan Green; Martin Grube; Roberto Lázaro Suau; Katharina Loewen-Schneider; Stefanie Maier; Thomas Peer; Ana Pintado; Jose Raggio; Ulrike Ruprecht; Leopoldo G. Sancho; Burkhard Schroeter; Roman Türk; Bettina Weber; Mats Wedin; Martin Westberg; Laura Williams; Lingjuan Zheng