Claudia Curcio
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Curcio.
Science Signaling | 2008
Elisa Ciraolo; Manuela Iezzi; Romina Marone; Stefano Marengo; Claudia Curcio; Carlotta Costa; Ornella Azzolino; Cristiano Gonella; Cristina Rubinetto; Haiyan Wu; Walter Dastrù; Erica Martin; Lorenzo Silengo; Fiorella Altruda; Emilia Turco; Letizia Lanzetti; Piero Musiani; Thomas Rückle; Christian Rommel; Jonathan M. Backer; Guido Forni; Matthias P. Wymann; Emilio Hirsch
The phosphoinositide 3-kinase p110β subunit has noncatalytic functions; its catalytic activity is pertinent to both diabetes and cancer. Unveiling p110β Phosphatidylinositide 3-kinase (PI3K) signaling has been implicated in the response to insulin and various growth factors. However, the specific role of the β isoform of the PI3K catalytic subunit (p110β) has been unclear. Analysis of mouse mutants carrying a catalytically inactive form of p110β reveals that it possesses noncatalytic as well as catalytic functions. Moreover, its catalytic activity is involved in sustaining the response to insulin signaling and in mediating forms of breast cancer associated with oncogenic epidermal growth factor signaling. The phosphoinositide 3-kinase (PI3K) pathway crucially controls metabolism and cell growth. Although different PI3K catalytic subunits are known to play distinct roles, the specific in vivo function of p110β (the product of the PIK3CB gene) is not clear. Here, we show that mouse mutants expressing a catalytically inactive PIK3CBK805R mutant survived to adulthood but showed growth retardation and developed mild insulin resistance with age. Pharmacological and genetic analyses of p110β function revealed that p110β catalytic activity is required for PI3K signaling downstream of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors as well as to sustain long-term insulin signaling. In addition, PIK3CBK805R mice were protected in a model of ERBB2-driven tumor development. These findings indicate an unexpected role for p110β catalytic activity in diabetes and cancer, opening potential avenues for therapeutic intervention.
Frontiers in Oncology | 2013
Cristina Marchini; Cristina Kalogris; Chiara Garulli; Lucia Pietrella; Federico Gabrielli; Claudia Curcio; Elena Quaglino; Federica Cavallo; Augusto Amici
The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs, and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long-lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing Phase I clinical trial (EudraCT 2011-001104-34).
Cancer Research | 2004
Elena Quaglino; Manuela Iezzi; Cristina Mastini; Augusto Amici; Federica Pericle; Emma Di Carlo; Serenella M. Pupa; Carla De Giovanni; Michela Spadaro; Claudia Curcio; Pier Luigi Lollini; Piero Musiani; Guido Forni; Federica Cavallo
The transforming rat Her-2/neu oncogene embedded into the genome of virgin transgenic BALB/c mice (BALB-neuT) provokes the development of an invasive carcinoma in each of their 10 mammary glands. i.m. vaccination with DNA plasmids coding for the extracellular and transmembrane domains of the protein product of the Her-2/neu oncogene started when mice already display multifocal in situ carcinomas temporarily halts neoplastic progression, but all mice develop a tumor by week 43. By contrast, progressive clearance of neoplastic lesions and complete protection of all 1-year-old mice are achieved when the same plasmids are electroporated at 10-week intervals. Pathological findings, in vitro tests, and the results from the immunization of both IFN-gamma and immunoglobulin gene knockout BALB-neuT mice, and of adoptive transfer experiments, all suggest that tumor clearance rests on the combination of antibodies and IFN-gamma-releasing T cells. These findings show that an appropriate vaccine effectively inhibits the progression of multifocal preneoplastic lesions.
Journal of Cellular and Molecular Medicine | 2010
Marta Coscia; Elena Quaglino; Manuela Iezzi; Claudia Curcio; Francesca Pantaleoni; Chiara Riganti; Ingunn Holen; Hannu Mönkkönen; Mario Boccadoro; Guido Forni; Piero Musiani; Amalia Bosia; Federica Cavallo; Massimo Massaia
It is unknown whether zoledronic acid (ZA) at clinically relevant doses is active against tumours not located in bone. Mice transgenic for the activated ErbB‐2 oncogene were treated with a cumulative number of doses equivalent to that recommended in human beings. A significant increase in tumour‐free and overall survival was observed in mice treated with ZA. At clinically compatible concentrations, ZA modulated the mevalonate pathway and affected protein prenylation in both tumour cells and macrophages. A marked reduction in the number of tumour‐associated macrophages was paralleled by a significant decrease in tumour vascularization. The local production of vascular endothelial growth factor and interleukin‐10 was drastically down‐regulated in favour of interferon‐γ production. Peritoneal macrophages and tumour‐associated macrophages of ZA‐treated mice recovered a full M1 antitumoral phenotype, as shown by nuclear translocation of nuclear factor kB, inducible nitric oxide synthase expression and nitric oxide production. These data indicate that clinically achievable doses of ZA inhibit spontaneous mammary cancerogenesis by targeting the local microenvironment, as shown by a decreased tumour vascularization, a reduced number of tumour‐associated macrophages and their reverted polarization from M2 to M1 phenotype.
Journal of Clinical Investigation | 2003
Claudia Curcio; Emma Di Carlo; Raphael Clynes; Mark J. Smyth; Katia Boggio; Elena Quaglino; Michela Spadaro; Mario P. Colombo; Augusto Amici; Pier Luigi Lollini; Piero Musiani; Guido Forni
Since the mechanisms by which specific immunity destroys Her-2/neu carcinoma cells are highly undetermined, these were assessed in BALB/c mice vaccinated with plasmids encoding extracellular and transmembrane domains of the protein product (p185(neu)) of the rat Her-2/neu oncogene shot into the skin by gene gun. Vaccinated mice rejected a lethal challenge of TUBO carcinoma cells expressing p185(neu). Depletion of CD4 T cells during immunization abolished the protection, while depletion of CD8 cells during the effector phase halved it, and depletion of polymorphonuclear granulocytes abolished all protection. By contrast, Ig mu-chain gene KO mice, as well as Fcgamma receptor I/III, beta-2 microglobulin, CD1, monocyte chemoattractant protein 1 (MCP1), IFN-gamma, and perforin gene KO mice were protected. Only mice with both IFN-gamma and perforin gene KOs were not protected. Although immunization also cured all BALB/c mice bearing established TUBO carcinomas, it did not cure any of the perforin KO or perforin and IFN-gamma KO mice. Few mice were cured that had knockouts of the gene for Ig mu-chain, Fcgamma receptor I/III, IFN-gamma, or beta-2 microglobulin. Moreover, vaccination cured half of the CD1 and the majority of the MCP1 KO mice. The eradication of established p185(neu) carcinomas involves distinct mechanisms, each endowed with a different curative potential.
International Journal of Cancer | 2004
Atul Varadhachary; Jeffrey S. Wolf; Karel Petrak; Bert W. O'Malley; Michela Spadaro; Claudia Curcio; Guido Forni; Federica Pericle
In this work, we investigated the anticancer activity of orally administered recombinant human lactoferrin (rhLF) alone and in combination with chemotherapy in tumor‐bearing mice. rhLF inhibited the growth of squamous cell carcinoma (O12) tumors in T cell–immunocompromised nu/nu mice by 80% when administered at 1,000 mg/kg (2.9 g/m2) by oral gavage twice daily for 8 days (p < 0.001). Similar activity was observed in syngeneic, immunocompetent BALB/c mice, where orally administered rhLF (1,000 mg/kg, 2.9 g/m2 once daily) halted the growth of mammary adenocarcinoma TUBO. Oral rhLF (200 mg/kg, 0.57 g/m2) was also used alone and in combination with cis‐platinum (5 mg/kg) to treat head‐and‐neck squamous cell carcinoma in a syngeneic murine model. Monotherapy with oral rhLF or cis‐platinum caused 61% or 66% tumor growth inhibition over placebo, respectively. Mice receiving both therapies showed 79% growth inhibition, a statistically significant improvement over each drug alone. We then demonstrated that administration of oral rhLF (300 mg/kg, 0.86 g/m2) to tumor‐bearing or naive mice resulted in (i) significantly increased production of IL‐18 in the intestinal tract, (ii) systemic NK cell activation and (iii) circulating CD8+ T‐cell expansion. These data suggest that oral rhLF is an immunomodulatory agent active against cancer as a single agent and in combination chemotherapy, exerting its systemic effect through stimulation of IL‐18 and other cytokines in the gut enterocytes. rhLF has been administered orally to 211 people without a single serious drug‐related adverse event. Thus, rhLF shows promise as a safe and well‐tolerated novel immunomodulatory anticancer agent.
Current Biology | 2006
Hsiu-Chuan Chou; Inés M. Antón; Mark R. Holt; Claudia Curcio; Stefania Lanzardo; Austen Worth; Siobhan O. Burns; Adrian J. Thrasher; Gareth E. Jones; Yolanda Calle
Summary The Wiskott-Aldrich Syndrome protein (WASP) is an adaptor protein that is essential for podosome formation in hematopoietic cells [1]. Given that 80% of identified Wiskott-Aldrich Syndrome patients result from mutations in the binding site for WASP-interacting-protein (WIP) [2], we examined the possible role of WIP in the regulation of podosome architecture and cell motility in dendritic cells (DCs). Our results show that WIP is essential both for the formation of actin cores containing WASP and cortactin and for the organization of integrin and integrin-associated proteins in circular arrays, specific characteristics of podosome structure. We also found that WIP is essential for the maintenance of the high turnover of adhesions and polarity in DCs. WIP exerts these functions by regulating calpain-mediated cleavage of WASP and by facilitating the localization of WASP to sites of actin polymerization at podosomes. Taken together, our results indicate that WIP is critical for the regulation of both the stability and localization of WASP in migrating DCs and suggest that WASP and WIP operate as a functional unit to control DC motility in response to changes in the extracellular environment.
Cancer Research | 2006
Elena Ambrosino; Michela Spadaro; Manuela Iezzi; Claudia Curcio; Guido Forni; Piero Musiani; Wei Zen Wei; Federica Cavallo
To assess the role of CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells in overcoming immunosurveillance of Erbb2 (HER-2/neu) mammary lesions, we studied the effects of their sustained removal in BALB/c female mice made transgenic for the rat Erbb2 (r-Erbb2) oncogene (BALB-neuT mice), which develop multiple mammary carcinomas. During the progression of these lesions, Treg cells expand in the spleen, tumor draining lymph nodes, and tumors. Repeated administration of anti-CD25 antibodies extends tumor-free survival, reduces carcinoma multiplicity, and leads to the manifestation of a natural antibody and CTL-mediated reactivity against r-Erbb2. Loss of Foxp3(+) Treg cells during anti-CD25 treatment remarkably caused the disappearance of Gr1(+) immature myeloid cells, suggesting a cross-talk between these two inhibitory immune cell types. Treg cell expansion associated with r-Erbb2 overexpression may be seen as a physiologic response to dampen the immune reaction elicited by local anomalous overexpression of a self-antigen.
Clinical Cancer Research | 2005
Michela Spadaro; Elena Ambrosino; Manuela Iezzi; Emma Di Carlo; Pamela Sacchetti; Claudia Curcio; Augusto Amici; Wei Zen Wei; Piero Musiani; Pier Luigi Lollini; Federica Cavallo; Guido Forni
Purpose: Whereas neoadjuvant therapy is emerging as a treatment option in early primary breast cancer, no data are available on the use of antiangiogenic and immunomodulatory agents in a neoadjuvant setting. In a model of Her-2 spontaneous mammary cancer, we investigated the efficacy of neoadjuvant interleukin 12 (IL-12) followed by “immune-surgery” of the residual tumor. Experimental Design: Female BALB/c mice transgenic for the rat Her-2 oncogene inexorably develop invasive carcinomas in all their mammary glands by the 23rd week of age. Mice with multifocal in situ carcinomas received four weekly i.p. injections of 100 ng IL-12 followed by a 3-week rest. This course was given four times. A few mice additionally received DNA plasmids encoding portions of the Her-2 receptor electroporated through transcutaneous electric pulses. Results: The protection elicited by IL-12 in combination with two DNA vaccine electroporations kept 63% of mice tumor-free. Complete protection of all 1-year-old mice was achieved when IL-12-treated mice received four vaccine electroporations. Pathologic findings, in vitro tests, and the results from immunization of both IFN-γ and immunoglobulin gene knockout transgenic mice and of adoptive transfer experiments all show that IL-12 augments the B- and T-cell response elicited by vaccination and slightly decreases the number of regulatory T cells. In addition, IL-12 strongly inhibits tumor angiogenesis. Conclusions: In Her-2 transgenic mice, IL-12 impairs tumor progression and triggers innate immunity so markedly that DNA vaccination becomes effective at late points in time when it is ineffective on its own.
Cancer Research | 2005
Karin Tegerstedt; Jan Alvar Lindencrona; Claudia Curcio; Kalle Andreasson; Carl Tullus; Guido Forni; Tina Dalianis; Rolf Kiessling; Torbjörn Ramqvist
Murine polyomavirus (MPyV) VP1 virus-like particles (VLPs), containing a fusion protein between MPyV VP2 and the extracellular and transmembrane domain of HER-2/neu (Her2), Her2(1-683)PyVLPs, were tested for their ability to vaccinate against Her2-expressing tumors in two different in vivo models. Protection was assessed both against a lethal challenge with a BALB/c mammary carcinoma transfected with human Her2 (D2F2/E2) and against the outgrowth of autochthonous mammary carcinomas in BALB-neuT mice, transgenic for the activated rat Her2 oncogene. A single injection of Her2(1-683)PyVLPs before tumor inoculation induced a complete rejection of D2F2/E2 tumor cells in BALB/c mice. Similarly, a single injection of Her2(1-683)PyVLPs at 6 weeks of age protected BALB-neuT mice with atypical hyperplasia from a later outgrowth of mammary carcinomas, whereas all controls developed palpable tumors in all mammary glands. VLPs containing only VP1 and VP2 did not induce protection. The protection elicited by Her2(1-683)PyVLPs vaccination was most likely due to a cellular immune response because a Her2-specific response was shown in an ELISPOT assay, whereas antibodies against Her2 were not detected in any of the two models. The results show the feasibility of using MPyV-VLPs carrying Her2 fusion proteins as safe and efficient vaccines against Her2-expressing tumors.