Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Dussaubat is active.

Publication


Featured researches published by Claudia Dussaubat.


Environmental Microbiology | 2010

Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera)

Cédric Alaux; Jean-Luc Brunet; Claudia Dussaubat; Fanny Mondet; Sylvie Tchamitchan; Marianne Cousin; Julien Brillard; Aurélie Baldy; Luc P. Belzunces; Yves Le Conte

Global pollinators, like honeybees, are declining in abundance and diversity, which can adversely affect natural ecosystems and agriculture. Therefore, we tested the current hypotheses describing honeybee losses as a multifactorial syndrome, by investigating integrative effects of an infectious organism and an insecticide on honeybee health. We demonstrated that the interaction between the microsporidia Nosema and a neonicotinoid (imidacloprid) significantly weakened honeybees. In the short term, the combination of both agents caused the highest individual mortality rates and energetic stress. By quantifying the strength of immunity at both the individual and social levels, we showed that neither the haemocyte number nor the phenoloxidase activity of individuals was affected by the different treatments. However, the activity of glucose oxidase, enabling bees to sterilize colony and brood food, was significantly decreased only by the combination of both factors compared with control, Nosema or imidacloprid groups, suggesting a synergistic interaction and in the long term a higher susceptibility of the colony to pathogens. This provides the first evidences that interaction between an infectious organism and a chemical can also threaten pollinators, interactions that are widely used to eliminate insect pests in integrative pest management.


PLOS ONE | 2012

Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera.

Claudia Dussaubat; Jean Luc Brunet; Mariano Higes; John K. Colbourne; Jacqueline Lopez; Jeong Hyeon Choi; Raquel Martín-Hernández; Cristina Botías; Marianne Cousin; Cynthia McDonnell; Marc Bonnet; Luc P. Belzunces; Robin F. A. Moritz; Yves Le Conte; Cédric Alaux

The microsporidium Nosema ceranae is a newly prevalent parasite of the European honey bee (Apis mellifera). Although this parasite is presently spreading across the world into its novel host, the mechanisms by it which affects the bees and how bees respond are not well understood. We therefore performed an extensive characterization of the parasite effects at the molecular level by using genetic and biochemical tools. The transcriptome modifications at the midgut level were characterized seven days post-infection with tiling microarrays. Then we tested the bee midgut response to infection by measuring activity of antioxidant and detoxification enzymes (superoxide dismutases, glutathione peroxidases, glutathione reductase, and glutathione-S-transferase). At the gene-expression level, the bee midgut responded to N. ceranae infection by an increase in oxidative stress concurrent with the generation of antioxidant enzymes, defense and protective response specifically observed in the gut of mammals and insects. However, at the enzymatic level, the protective response was not confirmed, with only glutathione-S-transferase exhibiting a higher activity in infected bees. The oxidative stress was associated with a higher transcription of sugar transporter in the gut. Finally, a dramatic effect of the microsporidia infection was the inhibition of genes involved in the homeostasis and renewal of intestinal tissues (Wnt signaling pathway), a phenomenon that was confirmed at the histological level. This tissue degeneration and prevention of gut epithelium renewal may explain early bee death. In conclusion, our integrated approach not only gives new insights into the pathological effects of N. ceranae and the bee gut response, but also demonstrate that the honey bee gut is an interesting model system for studying host defense responses.


Journal of Invertebrate Pathology | 2013

Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions

Claudia Dussaubat; Alban Maisonnasse; Didier Crauser; Dominique Beslay; Guy Costagliola; Samuel Soubeyrand; André Kretzchmar; Yves Le Conte

Parasites are known to cause the loss of individuals in social insects. In honey bee colonies the disappearance of foragers is a common factor of the wide extended colony losses. The emergent parasite of the European honey bee Nosema ceranae has been found to reduce homing and orientation skills and alter metabolism of forager bees. N. ceranae-infected bees also show changes in Ethyl Oleate (EO) levels, which is so far the only primer pheromone identified in workers that is involved in foraging behavior. Thus, we hypothesized that N. ceranae (i) modifies flight activity of honey bees and (ii) induces EO changes that can alter foraging behavior of nestmates. We compared flight activity of infected bees and non-infected bees in small colonies using an electronic optic bee counter during 28 days. We measured EO levels by gas chromatography-mass spectrometry and spore-counts. Bee mortality was estimated at the end of the experiment. Infected bees showed precocious and a higher flight activity than healthy bees, which agreed with the more elevated EO titers of infected bees and reduced lifespan. Our results suggest that the higher EO levels of infected bees might delay the behavioral maturation of same age healthy bees, which might explain their lower level of activity. We propose that delayed behavioral maturation of healthy bees might be a protective response to infection, as healthy bees would be performing less risky tasks inside the hive, thus extending their lifespan. We also discuss the potential of increased flight activity of infected bees to reduce pathogen transmission inside the hive. Further research is needed to understand the consequences of host behavioral changes on pathogen transmission. This knowledge may contribute to enhance natural colony defense behaviors through beekeeping practices to reduce probability of colony losses.


Journal of Invertebrate Pathology | 2011

Pathological effects of the microsporidium Nosema ceranae on honey bee queen physiology (Apis mellifera)

Cédric Alaux; Morgane Folschweiller; Cynthia McDonnell; Dominique Beslay; Marianne Cousin; Claudia Dussaubat; Jean-Luc Brunet; Yves Le Conte

Nosema ceranae, a microsporidian parasite originally described in the Asian honey bee Apis cerana, has recently been found to be cross-infective and to also parasitize the European honey bee Apis mellifera. Since this discovery, many studies have attempted to characterize the impact of this parasite in A. mellifera honey bees. Nosema species can infect all colony members, workers, drones and queens, but the pathological effects of this microsporidium has been mainly investigated in workers, despite the prime importance of the queen, who monopolizes the reproduction and regulates the cohesion of the society via pheromones. We therefore analyzed the impact of N. ceranae on queen physiology. We found that infection by N. ceranae did not affect the fat body content (an indicator of energy stores) but did alter the vitellogenin titer (an indicator of fertility and longevity), the total antioxidant capacity and the queen mandibular pheromones, which surprisingly were all significantly increased in Nosema-infected queens. Thus, such physiological changes may impact queen health, leading to changes in pheromone production, that could explain Nosema-induced supersedure (queen replacement).


Journal of Chemical Ecology | 2010

Nosema spp. Infection Alters Pheromone Production in Honey Bees (Apis mellifera)

Claudia Dussaubat; Alban Maisonnasse; Cédric Alaux; Sylvie Tchamitchan; Jean-Luc Brunet; Erika Plettner; Luc P. Belzunces; Yves Le Conte

Pheromones in social insects play a key role in the regulation of group homoeostasis. It is well-established that parasites can modify hormone signaling of their host, but less is known about the effect of parasites on pheromone signaling in insect societies. We, thus, tested in honey bees (Apis mellifera) the effect of the widespread parasite Nosema spp. on the production of ethyl oleate (EO), the only identified primer pheromone in honey bee workers. Since environmental stressors like pesticides also can weaken honey bees, we also analyzed the effect of imidacloprid, a neonicotinoid widely used in agriculture, on EO production. We show that, contrary to imidacloprid, Nosema spp. significantly altered EO production. In addition, the level of Nosema infection was correlated positively with the level of EO production. Since EO is involved in the regulation of division of labor among workers, our result suggests that the changes in EO signaling induced by parasitism have the potential to disturb the colony homoeostasis.


Veterinary Microbiology | 2013

Comparative study of Nosema ceranae (Microsporidia) isolates from two different geographic origins

Claudia Dussaubat; Soledad Sagastume; Tamara Gómez-Moracho; Cristina Botías; Pilar García-Palencia; Raquel Martín-Hernández; Yves Le Conte; Mariano Higes

The intestinal honey bee parasite Nosema ceranae (Microsporidia) is at the root of colony losses in some regions while in others its presence causes no direct mortality. This is the case for Spain and France, respectively. It is hypothesized that differences in honey bee responses to N. ceranae infection could be due to the degree of virulence of N. ceranae strains from different geographic origins. To test this hypothesis, we first performed a study to compare the genetic variability of an rDNA fragment that could reveal differences between two N. ceranae isolates, one from Spain and one from France. Then we compared the infection capacity of both isolates in Apis mellifera iberiensis, based on the anatomopathological lesions due to N. ceranae development in the honey bee midgut, N. ceranae spore-load in the midgut and the honey bee survival rate. Our results suggest that there is no specific genetic background of the two N. ceranae isolates, from Spain or France, used in this study. These results agree with the infection development, honey bee survival and spore-loads that were similar between honey bees infected with both N. ceranae isolates. Probably, differences in honey bee response to infection are more related to the degree of tolerance of honey bee subspecies or local hybrids to N. ceranae, or experimental conditions in the case of laboratory trials, than to differences between N. ceranae isolates. Further studies should be done to estimate the contribution of each of these factors on the response of the honey bees to infection.


PLOS ONE | 2015

Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis

Christoph Kurze; Yves Le Conte; Claudia Dussaubat; Silvio Erler; Per Kryger; Oleg Lewkowski; Thomas Müller; Miriam Widder; Robin F. A. Moritz

Apoptosis is not only pivotal for development, but also for pathogen defence in multicellular organisms. Although numerous intracellular pathogens are known to interfere with the host’s apoptotic machinery to overcome this defence, its importance for host-parasite coevolution has been neglected. We conducted three inoculation experiments to investigate in the apoptotic respond during infection with the intracellular gut pathogen Nosema ceranae, which is considered as potential global threat to the honeybee (Apis mellifera) and other bee pollinators, in sensitive and tolerant honeybees. To explore apoptotic processes in the gut epithelium, we visualised apoptotic cells using TUNEL assays and measured the relative expression levels of subset of candidate genes involved in the apoptotic machinery using qPCR. Our results suggest that N. ceranae reduces apoptosis in sensitive honeybees by enhancing inhibitor of apoptosis protein-(iap)-2 gene transcription. Interestingly, this seems not be the case in Nosema tolerant honeybees. We propose that these tolerant honeybees are able to escape the manipulation of apoptosis by N. ceranae, which may have evolved a mechanism to regulate an anti-apoptotic gene as key adaptation for improved host invasion.


Scientific Reports | 2016

Combined neonicotinoid pesticide and parasite stress alter honeybee queens' physiology and survival.

Claudia Dussaubat; Alban Maisonnasse; Didier Crauser; Sylvie Tchamitchian; Marc Bonnet; Marianne Cousin; André Kretzschmar; Jean-Luc Brunet; Yves Le Conte

Honeybee colony survival strongly relies on the queen to overcome worker losses exposed to combined stressors like pesticides and parasites. Queen’s capacity to withstand these stressors is however very little known. The effects of the common neonicotinoid pesticide imidacloprid in a chronic and sublethal exposure together with the wide distributed parasite Nosema ceranae have therefore been investigated on queen’s physiology and survivorship in laboratory and field conditions. Early physiological changes were observed on queens, particularly the increase of enzyme activities (catalase [CAT] and glutathione-S-transferase [GST] in the heads) related to protective responses to xenobiotics and oxidative stress against pesticide and parasite alone or combined. Stressors also alter the activity of two other enzymes (carboxylesterase alpha [CaE α] and carboxylesterase para [CaE p] in the midguts) involved in metabolic and detoxification functions. Furthermore, single and combined effects of pesticide and parasite decrease survivorship of queens introduced into mating hives for three months. Because colony demographic regulation relies on queen’s fertility, the compromise of its physiology and life can seriously menace colony survival under pressure of combined stressors.


Scientific Reports | 2017

Nosema ceranae , Fipronil and their combination compromise honey bee reproduction via changes in male physiology

Guillaume Kairo; David G. Biron; Faten Ben Abdelkader; Marc Bonnet; Sylvie Tchamitchian; Marianne Cousin; Claudia Dussaubat; Boris Benoit; André Kretzschmar; Luc P. Belzunces; Jean-Luc Brunet

The honey bee is threatened by biological agents and pesticides that can act in combination to induce synergistic effects on its physiology and lifespan. The synergistic effects of a parasite/pesticide combination have been demonstrated on workers and queens, but no studies have been performed on drones despite their essential contribution to colony sustainability by providing semen diversity and quality. The effects of the Nosema ceranae/fipronil combination on the life traits and physiology of mature drones were examined following exposure under semi-field conditions. The results showed that the microsporidia alone induced moderate and localized effects in the midgut, whereas fipronil alone induced moderate and generalized effects. The parasite/insecticide combination drastically affected both physiology and survival, exhibiting an important and significant generalized action that could jeopardize mating success. In terms of fertility, semen was strongly impacted regardless of stressor, suggesting that drone reproductive functions are very sensitive to stress factors. These findings suggest that drone health and fertility impairment might contribute to poorly mated queens, leading to the storage of poor quality semen and poor spermathecae diversity. Thus, the queens failures observed in recent years might result from the continuous exposure of drones to multiple environmental stressors.


Environmental Microbiology | 2018

Nosema ceranae in Apis mellifera: a 12 years postdetection perspective : Nosema ceranae in Apis mellifera

Raquel Martín-Hernández; Carolina Bartolomé; Nor Chejanovsky; Yves Le Conte; Anne Dalmon; Claudia Dussaubat; Pilar García-Palencia; Aránzazu Meana; M. Alice Pinto; Victoria Soroker; Mariano Higes

Nosema ceranae is a hot topic in honey bee health as reflected by numerous papers published every year. This review presents an update of the knowledge generated in the last 12 years in the field of N. ceranae research, addressing the routes of transmission, population structure and genetic diversity. This includes description of how the infection modifies the honey bees metabolism, the immune response and other vital functions. The effects on individual honey bees will have a direct impact on the colony by leading to losses in the adults population. The absence of clear clinical signs could keep the infection unnoticed by the beekeeper for long periods. The influence of the environmental conditions, beekeeping practices, bee genetics and the interaction with pesticides and other pathogens will have a direct influence on the prognosis of the disease. This review is approached from the point of view of the Mediterranean countries where the professional beekeeping has a high representation and where this pathogen is reported as an important threat.

Collaboration


Dive into the Claudia Dussaubat's collaboration.

Top Co-Authors

Avatar

Yves Le Conte

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-Luc Brunet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cédric Alaux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Luc P. Belzunces

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marianne Cousin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alban Maisonnasse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

André Kretzschmar

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cynthia McDonnell

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marc Bonnet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pilar García-Palencia

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge