Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia E. Vickers is active.

Publication


Featured researches published by Claudia E. Vickers.


Plant Cell and Environment | 2009

Isoprene synthesis protects transgenic tobacco plants from oxidative stress

Claudia E. Vickers; Malcolm Possell; Cristian I. Cojocariu; Violeta Velikova; Jullada Laothawornkitkul; Annette Ryan; Philip M. Mullineaux; C. Nicholas Hewitt

Isoprene emission represents a significant loss of carbon to those plant species that synthesize this highly volatile and reactive compound. As a tool for studying the role of isoprene in plant physiology and biochemistry, we developed transgenic tobacco plants capable of emitting isoprene in a similar manner to and at rates comparable to a naturally emitting species. Thermotolerance of photosynthesis against transient high-temperature episodes could only be observed in lines emitting high levels of isoprene; the effect was very mild and could only be identified over repetitive stress events. However, isoprene-emitting plants were highly resistant to ozone-induced oxidative damage compared with their non-emitting azygous controls. In ozone-treated plants, accumulation of toxic reactive oxygen species (ROS) was inhibited, and antioxidant levels were higher. Isoprene-emitting plants showed remarkably decreased foliar damage and higher rates of photosynthesis compared to non-emitting plants immediately following oxidative stress events. An inhibition of hydrogen peroxide accumulation in isoprene-emitting plants may stall the programmed cell death response which would otherwise lead to foliar necrosis. These results demonstrate that endogenously produced isoprene provides protection from oxidative damage.


Plant Physiology | 2004

Promoter Analysis of the Barley Pht1;1 Phosphate Transporter Gene Identifies Regions Controlling Root Expression and Responsiveness to Phosphate Deprivation

Petra H.D. Schünmann; Alan E. Richardson; Claudia E. Vickers; Emmanuel Delhaize

Previous studies have shown that the promoter from the barley (Hordeum vulgare) phosphate transporter gene, HvPht1;1, activates high levels of expression in rice (Oryza sativa) roots and that the expression level was induced by up to 4-fold in response to phosphorus (P) deprivation. To identify promoter regions controlling gene regulation specificities, successive promoter truncations were made and attached to reporter genes. Promoters of between 856 and 1,400 nucleotides activated gene expression in a number of cell types but with maximal expression in trichoblast (root hair) cells. For shorter promoters the trichoblast specificity was lost, but in other tissues the distribution pattern was unchanged. The low P induction response was unaffected by promoter length. Domain exchange experiments subsequently identified that the region between −856 and −547 nucleotides (relative to the translational start) is required for epidermal cell expression. A second region located between 0 and −195 nucleotides controls root-tip expression. The HvPht1;1 promoter contains one PHO-like motif and three motifs similar to the dicot P1BS element. Analysis of promoters from which the PHO-like element was eliminated (by truncation) showed no change in the gene induction response to P deficiency. In contrast, mutation of the P1BS elements eliminated any induction of gene expression in response to low P. An internal HvPht1;1 promoter fragment, incorporating a single P1BS element, had an increased response to P deprivation in comparison with the unmodified promoter (containing three elements). Together these findings further our understanding of the regulation of the HvPht1;1 gene and provide direct evidence for a functional role of the P1BS element in the expression of P-regulated genes.


Plant Cell and Environment | 2008

Isoprene emissions influence herbivore feeding decisions.

Jullada Laothawornkitkul; Nigel D. Paul; Claudia E. Vickers; Malcolm Possell; Jane E. Taylor; Philip M. Mullineaux; C. Nicholas Hewitt

Isoprene (C(5)H(8), 2-methyl 1,3-butadiene) is synthesized and emitted by many, but not all, plants. Unlike other related volatile organic compounds (monoterpenes and sesquiterpenes), isoprene has not been shown to mediate plant-herbivore interactions. Here, for the first time, we show, in feeding choice tests using isoprene-emitting transgenic tobacco plants (Nicotiana tabacum cv. Samsun) and non-emitting azygous control plants, that isoprene deters Manduca sexta caterpillars from feeding. This avoidance behaviour was confirmed using an artificial (isoprene-emitting and non-emitting control) diet. Both in vivo and in vitro experiments showed that isoprene can activate feeding avoidance behaviour in this system with a dose-response effect on caterpillar behaviour and an isoprene emission threshold level of <6 nmol m(-2) s(-1).


Plant Cell Reports | 2003

Selectable marker-free transgenic barley producing a high level of cellulase (1,4-β-glucanase) in developing grains

Gang-Ping Xue; M. Patel; J. S. Johnson; Danielle J. Smyth; Claudia E. Vickers

The use of barley grains as bioreactors for high-level production of cellulase (1,4-β-glucanase) was investigated. A hybrid cellulase gene, cel-hyb1, driven by the rice GluB-1 promoter was expressed specifically in developing endosperm. Codon usage optimisation of cel-hyb1 increased its expression in barley grains 527-fold and led to cellulase production of up to 1.5% of total grain protein. CEL-HYB1 enzyme in barley grains was highly stable during post-harvest storage. Selectable marker gene (hph) was subsequently eliminated from transgenic lines through segregation of hph from synthetic cel-hyb1 (syn.cel-hyb1) in T1 progeny, using a binary plasmid containing hph and syn.cel-hyb1 in separate T-DNAs. These data suggest that barley grains can potentially be used for the commercial production of cellulase.


Plant Cell and Environment | 2014

Metabolic engineering of volatile isoprenoids in plants and microbes.

Claudia E. Vickers; Mareike Bongers; Qing Liu; Thierry Delatte; Harro J. Bouwmeester

The chemical properties and diversity of volatile isoprenoids lends them to a broad variety of biological roles. It also lends them to a host of biotechnological applications, both by taking advantage of their natural functions and by using them as industrial chemicals/chemical feedstocks. Natural functions include roles as insect attractants and repellents, abiotic stress protectants in pathogen defense, etc. Industrial applications include use as pharmaceuticals, flavours, fragrances, fuels, fuel additives, etc. Here we will examine the ways in which researchers have so far found to exploit volatile isoprenoids using biotechnology. Production and/or modification of volatiles using metabolic engineering in both plants and microorganisms are reviewed, including engineering through both mevalonate and methylerythritol diphosphate pathways. Recent advances are illustrated using several case studies (herbivores and bodyguards, isoprene, and monoterpene production in microbes). Systems and synthetic biology tools with particular utility for metabolic engineering are also reviewed. Finally, we discuss the practical realities of various applications in modern biotechnology, explore possible future applications, and examine the challenges of moving these technologies forward so that they can deliver tangible benefits. While this review focuses on volatile isoprenoids, many of the engineering approaches described here are also applicable to non-isoprenoid volatiles and to non-volatile isoprenoids.


Microbial Cell Factories | 2013

Knock-in/Knock-out (KIKO) vectors for rapid integration of large DNA sequences, including whole metabolic pathways, onto the Escherichia coli chromosome at well-characterised loci

Suriana Sabri; Jennifer A. Steen; Mareike Bongers; Lars K. Nielsen; Claudia E. Vickers

BackgroundMetabolic engineering projects often require integration of multiple genes in order to control the desired phenotype. However, this often requires iterative rounds of engineering because many current insertion approaches are limited by the size of the DNA that can be transferred onto the chromosome. Consequently, construction of highly engineered strains is very time-consuming. A lack of well-characterised insertion loci is also problematic.ResultsA series of knock-in/knock-out (KIKO) vectors was constructed for integration of large DNA sequences onto the E. coli chromosome at well-defined loci. The KIKO plasmids target three nonessential genes/operons as insertion sites: arsB (an arsenite transporter); lacZ (β-galactosidase); and rbsA-rbsR (a ribose metabolism operon). Two homologous ‘arms’ target each insertion locus; insertion is mediated by λ Red recombinase through these arms. Between the arms is a multiple cloning site for the introduction of exogenous sequences and an antibiotic resistance marker (either chloramphenicol or kanamycin) for selection of positive recombinants. The resistance marker can subsequently be removed by flippase-mediated recombination. The insertion cassette is flanked by hairpin loops to isolate it from the effects of external transcription at the integration locus. To characterize each target locus, a xylanase reporter gene (xynA) was integrated onto the chromosomes of E. coli strains W and K-12 using the KIKO vectors. Expression levels varied between loci, with the arsB locus consistently showing the highest level of expression. To demonstrate the simultaneous use of all three loci in one strain, xynA, green fluorescent protein (gfp) and a sucrose catabolic operon (cscAKB) were introduced into lacZ, arsB and rbsAR respectively, and shown to be functional.ConclusionsThe KIKO plasmids are a useful tool for efficient integration of large DNA fragments (including multiple genes and pathways) into E. coli. Chromosomal insertion provides stable expression without the need for continuous antibiotic selection. Three non-essential loci have been characterised as insertion loci; combinatorial insertion at all three loci can be performed in one strain. The largest insertion at a single site described here was 5.4 kb; we have used this method in other studies to insert a total of 7.3 kb at one locus and 11.3 kb across two loci. These vectors are particularly useful for integration of multigene cassettes for metabolic engineering applications.


Applied and Environmental Microbiology | 2013

Molecular control of sucrose utilization in Escherichia coli W, an efficient sucrose-utilizing strain

Suriana Sabri; Lars K. Nielsen; Claudia E. Vickers

ABSTRACT Sucrose is an industrially important carbon source for microbial fermentation. Sucrose utilization in Escherichia coli, however, is poorly understood, and most industrial strains cannot utilize sucrose. The roles of the chromosomally encoded sucrose catabolism (csc) genes in E. coli W were examined by knockout and overexpression experiments. At low sucrose concentrations, the csc genes are repressed and cells cannot grow. Removal of either the repressor protein (cscR) or the fructokinase (cscK) gene facilitated derepression. Furthermore, combinatorial knockout of cscR and cscK conferred an improved growth rate on low sucrose. The invertase (cscA) and sucrose transporter (cscB) genes are essential for sucrose catabolism in E. coli W, demonstrating that no other genes can provide sucrose transport or inversion activities. However, cscK is not essential for sucrose utilization. Fructose is excreted into the medium by the cscK-knockout strain in the presence of high sucrose, whereas at low sucrose (when carbon availability is limiting), fructose is utilized by the cell. Overexpression of cscA, cscAK, or cscAB could complement the WΔcscRKAB knockout mutant or confer growth on a K-12 strain which could not naturally utilize sucrose. However, phenotypic stability and relatively good growth rates were observed in the K-12 strain only when overexpressing cscAB, and full growth rate complementation in WΔcscRKAB also required cscAB. Our understanding of sucrose utilization can be used to improve E. coli W and engineer sucrose utilization in strains which do not naturally utilize sucrose, allowing substitution of sucrose for other, less desirable carbon sources in industrial fermentations.


Biotechnology Letters | 2012

Examining the feasibility of bulk commodity production in Escherichia coli

Claudia E. Vickers; Daniel Klein-Marcuschamer; Jens O. Krömer

Escherichia coli is currently used by many research institutions and companies around the world as a platform organism for the development of bio-based production processes for bulk biochemicals. A given bulk biochemical bioprocess must be economically competitive with current production routes. Ideally the viability of each bioprocess should be evaluated prior to commencing research, both by metabolic network analysis (to determine the maximum theoretical yield of a given biocatalyst) and by techno-economic analysis (TEA; to determine the conditions required to make the bioprocess cost-competitive). However, these steps are rarely performed. Here we examine theoretical yields and review available TEA for bulk biochemical production in E. coli. In addition, we examine fermentation feedstocks and review recent strain engineering approaches to achieve industrially-relevant production, using examples for which TEA has been performed: ethanol, poly-3-hydroxybutyrate, and 1,3-propanediol.


Plant Molecular Biology | 2006

A novel cis-acting element, ESP, contributes to high-level endosperm-specific expression in an oat globulin promoter.

Claudia E. Vickers; Gang-Ping Xue; Peter M. Gresshoff

To examine the genetic controls of endosperm (ES) specificity, several cereal seed storage protein (SSP) promoters were isolated and studied using a transient expression analysis system. An oat globulin promoter (AsGlo1) capable of driving strong ES-specific expression in barley and wheat was identified. Progressive 5′ deletions and cis element mutations demonstrated that the mechanism of specificity in the AsGlo1 promoter was distinct from that observed in glutelin and prolamin promoters. A novel interrupted palindromic sequence, ACATGTCATCATGT, was required for ES specificity and substantially contributed to expression strength of the␣AsGlo1 promoter. This sequence was termed the endosperm specificity palindrome (ESP) element. The GCN4 element, which has previously been shown to be required for ES specificity in cereal SSP promoters, had a quantitative role but was not required for tissue specificity. The 960-bp AsGlo1 promoter and a 251-bp deletion containing the ESP element also drove ES-specific expression in stably transformed barley. Reporter gene protein accumulated at very high levels (10% of total soluble protein) in ES tissues of plants transformed with an AsGlo1:GFP construct. Expression strength and tissue specificity were maintained over five transgenic generations. These attributes make the AsGlo1 promoter an ideal promoter for biotechnology applications. In conjunction with previous findings, our data demonstrate that there is more than one genetically distinct mechanism by which ES specificity can be achieved in cereal SSP promoters, and also suggest that there is redundancy between transcriptional and post-transcriptional tissue specificity mechanisms in cereal globulin genes.


Plant Molecular Biology | 2010

Genetic structure and regulation of isoprene synthase in Poplar (Populus spp.)

Claudia E. Vickers; Malcolm Possell; C. Nicholas Hewitt; Philip M. Mullineaux

Isoprene is a volatile 5-carbon hydrocarbon derived from the chloroplastic methylerythritol 2-C-methyl-d-erythritol 4-phosphate isoprenoid pathway. In plants, isoprene emission is controlled by the enzyme isoprene synthase; however, there is still relatively little known about the genetics and regulation of this enzyme. Isoprene synthase gene structure was analysed in three poplar species. It was found that genes encoding stromal isoprene synthase exist as a small gene family, the members of which encode virtually identical proteins and are differentially regulated. Accumulation of isoprene synthase protein is developmentally regulated, but does not differ between sun and shade leaves and does not increase when heat stress is applied. Our data suggest that, in mature leaves, isoprene emission rates are primarily determined by substrate (dimethylallyl diphosphate, DMADP) availability. In immature leaves, where isoprene synthase levels are variable, emission levels are also influenced by the amount of isoprene synthase protein. No thylakoid isoforms could be identified in Populus alba or in Salix babylonica. Together, these data show that control of isoprene emission at the genetic level is far more complicated than previously assumed.

Collaboration


Dive into the Claudia E. Vickers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bingyin Peng

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Gang-Ping Xue

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge