Claudia Fallini
Emory University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Fallini.
Nature Neuroscience | 2012
Chi Hong Wu; Claudia Fallini; Nicola Ticozzi; Pamela Keagle; Peter C. Sapp; Katarzyna Piotrowska; Patrick Lowe; Max Koppers; Diane McKenna-Yasek; Desiree M. Baron; Jason E. Kost; Paloma Gonzalez-Perez; Andrew Fox; Jenni Adams; Franco Taroni; Cinzia Tiloca; Ashley Lyn Leclerc; Shawn C. Chafe; Dev Mangroo; Melissa J. Moore; Jill A. Zitzewitz; Zuo Shang Xu; Leonard H. van den Berg; Jonathan D. Glass; Gabriele Siciliano; Elizabeth T. Cirulli; David B. Goldstein; François Salachas; Vincent Meininger; Wilfried Rossoll
MATR3 is an RNA- and DNA-binding protein that interacts with TDP-43, a disease protein linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Using exome sequencing, we identified mutations in MATR3 in ALS kindreds. We also observed MATR3 pathology in ALS-affected spinal cords with and without MATR3 mutations. Our data provide more evidence supporting the role of aberrant RNA processing in motor neuron degeneration.
Journal of Neurochemistry | 2009
Claudia Colombrita; Eleonora Zennaro; Claudia Fallini; Markus Weber; Andreas Sommacal; Emanuele Buratti; Vincenzo Silani; Antonia Ratti
Transactive response DNA‐binding protein 43 (TDP‐43) forms abnormal ubiquitinated and phosphorylated inclusions in brain tissues from patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. TDP‐43 is a DNA/RNA‐binding protein involved in RNA processing, such as transcription, pre‐mRNA splicing, mRNA stabilization and transport to dendrites. We found that in response to oxidative stress and to environmental insults of different types TDP‐43 is capable to assemble into stress granules (SGs), ribonucleoprotein complexes where protein synthesis is temporarily arrested. We demonstrated that a specific aminoacidic interval (216–315) in the C‐terminal region and the RNA‐recognition motif 1 domain are both implicated in TDP‐43 participation in SGs as their deletion prevented the recruitment of TDP‐43 into SGs. Our data show that TDP‐43 is a specific component of SGs and not of processing bodies, although we proved that TDP‐43 is not necessary for SG formation, and its gene silencing does not impair cell survival during stress. The analysis of spinal cord tissue from ALS patients showed that SG markers are not entrapped in TDP‐43 pathological inclusions. Although SGs were not evident in ALS brains, we speculate that an altered control of mRNA translation in stressful conditions may trigger motor neuron degeneration at early stages of the disease.
Brain Research | 2012
Claudia Fallini; Gary J. Bassell; Wilfried Rossoll
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by homozygous mutations or deletions in the survival of motor neuron (SMN1) gene, encoding the ubiquitously expressed SMN protein. SMN associates with different proteins (Gemins 2-8, Unrip) to form a multimeric complex involved in the assembly of small nuclear ribonucleoprotein complexes (snRNPs). Since this activity is essential for the survival of all cell types, it still remains unclear why motor neurons are selectively vulnerable to low levels of SMN protein. Aside from its housekeeping role in the assembly of snRNPs, additional functions of SMN have been proposed. The well-documented localization of SMN in axonal transport granules and its interaction with numerous mRNA-binding proteins not involved in splicing regulation suggest a role in axonal RNA metabolism. This review will focus on the neuropathological and experimental evidence supporting a role for SMN in regulating the assembly, localization, or stability of axonal messenger ribonucleoprotein complexes (mRNPs). Furthermore, how defects in this non-canonical SMN function may contribute to the motor neuron pathology observed in SMA will be discussed. This article is part of a Special Issue entitled RNA-Binding Proteins.
Human Molecular Genetics | 2012
Claudia Fallini; Gary J. Bassell; Wilfried Rossoll
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease specifically affecting cortical and spinal motor neurons. Cytoplasmic inclusions containing hyperphosphorylated and ubiquitinated TDP-43 are a pathological hallmark of ALS, and mutations in the gene encoding TDP-43 have been directly linked to the development of the disease. TDP-43 is a ubiquitous DNA/RNA-binding protein with a nuclear role in pre-mRNA splicing. However, the selective vulnerability and axonal degeneration of motor neurons in ALS pose the question of whether TDP-43 may have an additional role in the regulation of the cytoplasmic and axonal fate of mRNAs, processes important for neuron function. To investigate this possibility, we have characterized TDP-43 localization and dynamics in primary cultured motor neurons. Using a combination of cell imaging and biochemical techniques, we demonstrate that TDP-43 is localized and actively transported in live motor neuron axons, and that it co-localizes with well-studied axonal mRNA-binding proteins. Expression of the TDP-43 C-terminal fragment led to the formation of hyperphosphorylated and ubiquitinated inclusions in motor neuron cell bodies and neurites, and these inclusions specifically sequestered the mRNA-binding protein HuD. Additionally, we showed that overexpression of full-length or mutant TDP-43 in motor neurons caused a severe impairment in axon outgrowth, which was dependent on the C-terminal protein-interacting domain of TDP-43. Taken together, our results suggest a role of TDP-43 in the regulation of axonal growth, and suggest that impairment in the post-transcriptional regulation of mRNAs in the cytoplasm of motor neurons may be a major factor in the development of ALS.
Journal of Cell Science | 2006
Antonia Ratti; Claudia Fallini; Lidia Cova; Roberto Fantozzi; Cinzia Calzarossa; Eleonora Zennaro; Alessia Pascale; Alessandro Quattrone; Vincenzo Silani
Post-transcriptional regulation exerted by neural-specific RNA-binding proteins plays a pivotal role in the development and maintenance of the nervous system. Neural ELAV proteins are key inducers of neuronal differentiation through the stabilization and/or translational enhancement of target transcripts bearing the AU-rich elements (AREs), whereas Musashi-1 maintains the stem cell proliferation state by acting as a translational repressor. Since the gene encoding Musashi-1 (Msi1) contains a conserved ARE in its 3′ untranslated region, we focused on the possibility of a mechanistic relationship between ELAV proteins and Musashi-1 in cell fate commitment. Colocalization of neural ELAV proteins with Musashi-1 clearly shows that ELAV proteins are expressed at early stages of neural commitment, whereas interaction studies demonstrate that neural ELAV proteins exert an ARE-dependent binding activity on the Msi1 mRNA. This binding activity has functional effects, since the ELAV protein family member HuD is able to stabilize the Msi1 ARE-containing mRNA in a sequence-dependent way in a deadenylation/degradation assay. Furthermore activation of the neural ELAV proteins by phorbol esters in human SH-SY5Y cells is associated with an increase of Musashi-1 protein content in the cytoskeleton. We propose that ELAV RNA-binding proteins exert an important post-transcriptional control on Musashi-1 expression in the transition from proliferation to neural differentiation of stem/progenitor cells.
Molecular Neurodegeneration | 2010
Claudia Fallini; Gary J. Bassell; Wilfried Rossoll
BackgroundCultured spinal motor neurons are a valuable tool to study basic mechanisms of development, axon growth and pathfinding, and, importantly, to analyze the pathomechanisms underlying motor neuron diseases. However, the application of this cell culture model is limited by the lack of efficient gene transfer techniques which are available for other neurons. To address this problem, we have established magnetofection as a novel method for the simple and efficient transfection of mouse embryonic motor neurons. This technique allows for the study of the effects of gene expression and silencing on the development and survival of motor neurons.ResultsWe found that magnetofection, a novel transfection technology based on the delivery of DNA-coated magnetic nanobeads, can be used to transfect primary motor neurons. Therefore, in order to use this method as a new tool for studying the localization and transport of axonal proteins, we optimized conditions and determined parameters for efficient transfection rates of >45% while minimizing toxic effects on survival and morphology. To demonstrate the potential of this method, we have used transfection with plasmids encoding fluorescent fusion-proteins to show for the first time that the spinal muscular atrophy-disease protein Smn is actively transported along axons of live primary motor neurons, supporting an axon-specific role for Smn that is different from its canonical function in mRNA splicing. We were also able to show the suitability of magnetofection for gene knockdown with shRNA-based constructs by significantly reducing Smn levels in both cell bodies and axons, opening new opportunities for the study of the function of axonal proteins in motor neurons.ConclusionsIn this study we have established an optimized magnetofection protocol as a novel transfection method for primary motor neurons that is simple, efficient and non-toxic. We anticipate that this novel approach will have a broad applicability in the study of motor neuron development, axonal trafficking, and molecular mechanisms of motor neuron diseases.
Nature Genetics | 2016
Kevin Kenna; Perry T.C. van Doormaal; Annelot M. Dekker; Nicola Ticozzi; Brendan J. Kenna; Frank P. Diekstra; Wouter van Rheenen; Kristel R. van Eijk; Ashley Jones; Pamela Keagle; Aleksey Shatunov; William Sproviero; Bradley Smith; Michael A. van Es; Simon Topp; Aoife Kenna; John Miller; Claudia Fallini; Cinzia Tiloca; Russell McLaughlin; Caroline Vance; Claire Troakes; Claudia Colombrita; Gabriele Mora; Andrea Calvo; Federico Verde; Safa Al-Sarraj; Andrew King; Daniela Calini; Jacqueline de Belleroche
To identify genetic factors contributing to amyotrophic lateral sclerosis (ALS), we conducted whole-exome analyses of 1,022 index familial ALS (FALS) cases and 7,315 controls. In a new screening strategy, we performed gene-burden analyses trained with established ALS genes and identified a significant association between loss-of-function (LOF) NEK1 variants and FALS risk. Independently, autozygosity mapping for an isolated community in the Netherlands identified a NEK1 p.Arg261His variant as a candidate risk factor. Replication analyses of sporadic ALS (SALS) cases and independent control cohorts confirmed significant disease association for both p.Arg261His (10,589 samples analyzed) and NEK1 LOF variants (3,362 samples analyzed). In total, we observed NEK1 risk variants in nearly 3% of ALS cases. NEK1 has been linked to several cellular functions, including cilia formation, DNA-damage response, microtubule stability, neuronal morphology and axonal polarity. Our results provide new and important insights into ALS etiopathogenesis and genetic etiology.
PLOS ONE | 2012
Eric B. Dammer; Claudia Fallini; Yair M. Gozal; Duc M. Duong; Wilfried Rossoll; Ping Xu; James J. Lah; Allan I. Levey; Junmin Peng; Gary J. Bassell; Nicholas T. Seyfried
TAR DNA-binding protein 43 (TDP-43) is a major component within ubiquitin-positive inclusions of a number of neurodegenerative diseases that increasingly are considered as TDP-43 proteinopathies. Identities of other inclusion proteins associated with TDP-43 aggregation remain poorly defined. In this study, we identify and quantitate 35 co-aggregating proteins in the detergent-resistant fraction of HEK-293 cells in which TDP-43 or a particularly aggregate prone variant, TDP-S6, were enriched following overexpression, using stable isotope-labeled (SILAC) internal standards and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). We also searched for differential post-translational modification (PTM) sites of ubiquitination. Four sites of ubiquitin conjugation to TDP-43 or TDP-S6 were confirmed by dialkylated GST-TDP-43 external reference peptides, occurring on or near RNA binding motif (RRM) 1. RRM-containing proteins co-enriched in cytoplasmic granular structures in HEK-293 cells and primary motor neurons with insoluble TDP-S6, including cytoplasmic stress granule associated proteins G3BP, PABPC1, and eIF4A1. Proteomic evidence for TDP-43 co-aggregation with paraspeckle markers RBM14, PSF and NonO was also validated by western blot and by immunocytochemistry in HEK-293 cells. An increase in peptides from methylated arginine-glycine-glycine (RGG) RNA-binding motifs of FUS/TLS and hnRNPs was found in the detergent-insoluble fraction of TDP-overexpressing cells. Finally, TDP-43 and TDP-S6 detergent-insoluble species were reduced by mutagenesis of the identified ubiquitination sites, even following oxidative or proteolytic stress. Together, these findings define some of the aggregation partners of TDP-43, and suggest that TDP-43 ubiquitination influences TDP-43 oligomerization.
Journal of Biological Chemistry | 2008
Antonia Ratti; Claudia Fallini; Claudia Colombrita; Alessia Pascale; Umberto Laforenza; Alessandro Quattrone; Vincenzo Silani
Alternative splicing of pre-mRNAs plays an important role in generating biological and functional diversity. Neuro-oncological ventral antigen 1 (Nova1) is a neuron-specific splicing factor that controls the alternative processing of a wide array of mRNAs important for synaptic activity. It is essential for the proper development of the mammalian motor system and for the survival of motoneurons. Because Nova1 gene contains putative regulatory AU-rich elements (ARE) in its highly conserved 3′-untranslated region, we investigated whether its expression is regulated by post-transcriptional mechanisms mediated by ARE-binding proteins. Among these, the neuronal ELAV (nELAV) factors are interesting candidates, because their RNA binding activity is necessary for neuronal differentiation and maintenance. By analysis of ribonucleoprotein complexes in vivo and in vitro we demonstrated that the Nova1 mRNA is a novel target of the nELAV proteins. We defined the nELAV binding site by functional experiments with luciferase reporter gene and Nova1 3′-untranslated region deletion sequences. Gene silencing and overexpression of the nELAV member HuD in motoneuronal NSC34 cells indicate that Nova1 mRNA stability and translation are positively and strongly controlled by the nELAV proteins. In addition, nELAV phosphorylation by a PKC-dependent pathway induces the recruitment of Nova1 mRNA to polysomes. Noteworthy, we found that nELAV proteins are also able to modulate Nova1 splicing activity on its target genes. Our data indicate nELAV proteins as the first factors affecting the expression and activity of the neuronal splicing regulator Nova1 and, consequently, as major candidates for the physiological modulation of Nova1-dependent processing of pre-mRNAs in neurons.
Developmental Neurobiology | 2014
Claudia Fallini; Jeremy P. Rouanet; Paul G. Donlin-Asp; Peng Guo; Honglai Zhang; Robert H. Singer; Wilfried Rossoll; Gary J. Bassell
Spinal muscular atrophy (SMA) is a lethal neurodegenerative disease specifically affecting spinal motor neurons. SMA is caused by the homozygous deletion or mutation of the survival of motor neuron 1 (SMN1) gene. The SMN protein plays an essential role in the assembly of spliceosomal ribonucleoproteins. However, it is still unclear how low levels of the ubiquitously expressed SMN protein lead to the selective degeneration of motor neurons. An additional role for SMN in the regulation of the axonal transport of mRNA‐binding proteins (mRBPs) and their target mRNAs has been proposed. Indeed, several mRBPs have been shown to interact with SMN, and the axonal levels of few mRNAs, such as the β‐actin mRNA, are reduced in SMA motor neurons. In this study we have identified the β‐actin mRNA‐binding protein IMP1/ZBP1 as a novel SMN‐interacting protein. Using a combination of biochemical assays and quantitative imaging techniques in primary motor neurons, we show that IMP1 associates with SMN in individual granules that are actively transported in motor neuron axons. Furthermore, we demonstrate that IMP1 axonal localization depends on SMN levels, and that SMN deficiency in SMA motor neurons leads to a dramatic reduction of IMP1 protein levels. In contrast, no difference in IMP1 protein levels was detected in whole brain lysates from SMA mice, further suggesting neuron specific roles of SMN in IMP1 expression and localization. Taken together, our data support a role for SMN in the regulation of mRNA localization and axonal transport through its interaction with mRBPs such as IMP1.