Claudia Fredolini
Royal Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Fredolini.
Molecular & Cellular Proteomics | 2008
Amy VanMeter; Adrianna S. Rodriguez; Elise D. Bowman; Jin Jen; Curtis C. Harris; Jianghong Deng; Valerie S. Calvert; Alessandra Silvestri; Claudia Fredolini; Vikas Chandhoke; Emanuel F. Petricoin; Lance A. Liotta; Virginia Espina
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor β suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.
Journal of Proteome Research | 2011
Barbara Tomaino; Paola Cappello; Michela Capello; Claudia Fredolini; Isabella Sperduti; Paola Migliorini; Paola Salacone; Anna Novarino; Alice Giacobino; Libero Ciuffreda; Massimo Alessio; Paola Nisticò; Aldo Scarpa; Paolo Pederzoli; Weidong Zhou; Emanuel F. Petricoin; Lance A. Liotta; Mirella Giovarelli; Michele Milella; Francesco Novelli
Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis and no diagnostic markers have, as of yet, been defined. In PDAC patients, α-enolase (ENOA) is up-regulated and elicits the production of autoantibodies. Here, we analyzed the autoantibody response to post-translational modifications of ENOA in PDAC patients. ENOA isolated from PDAC tissues and cell lines was characterized by two-dimensional electrophoresis (2-DE) Western blot (WB), revealing the expression of six different isoforms (named ENOA1,2,3,4,5,6) whereas only 4 isoforms (ENOA3,4,5,6) were detectable in normal tissues. As assessed by 2-DE WB, 62% of PDAC patients produced autoantibodies to the two more acidic isoforms (ENOA1,2) as opposed to only 4% of controls. Mass spectrometry showed that ENOA1,2 isoforms were phosphorylated on serine 419. ROC analysis demonstrated that autoantibodies to ENOA1,2 usefully complement the diagnostic performance of serum CA19.9 levels, achieving approximately 95% diagnostic accuracy in both advanced and resectable PDAC. Moreover, the presence of autoantibodies against ENOA1,2 correlated with a significantly better clinical outcome in advanced patients treated with standard chemotherapy. In conclusion, our results demonstrate that ENOA phosphorylation is associated with PDAC and induces specific autoantibody production in PDAC patients that may have diagnostic value.
PLOS ONE | 2009
Caterina Longo; Alexis Patanarut; Tony George; Barney Bishop; Weidong Zhou; Claudia Fredolini; Mark M. Ross; Virginia Espina; Giovanni Pellacani; Emanuel F. Petricoin; Lance A. Liotta; Alessandra Luchini
Background The blood proteome is thought to represent a rich source of biomarkers for early stage disease detection. Nevertheless, three major challenges have hindered biomarker discovery: a) candidate biomarkers exist at extremely low concentrations in blood; b) high abundance resident proteins such as albumin mask the rare biomarkers; c) biomarkers are rapidly degraded by endogenous and exogenous proteinases. Methodology and Principal Findings Hydrogel nanoparticles created with a N-isopropylacrylamide based core (365 nm)-shell (167 nm) and functionalized with a charged based bait (acrylic acid) were studied as a technology for addressing all these biomarker discovery problems, in one step, in solution. These harvesting core-shell nanoparticles are designed to simultaneously conduct size exclusion and affinity chromatography in solution. Platelet derived growth factor (PDGF), a clinically relevant, highly labile, and very low abundance biomarker, was chosen as a model. PDGF, spiked in human serum, was completely sequestered from its carrier protein albumin, concentrated, and fully preserved, within minutes by the particles. Particle sequestered PDGF was fully protected from exogenously added tryptic degradation. When the nanoparticles were added to a 1 mL dilute solution of PDGF at non detectable levels (less than 20 picograms per mL) the concentration of the PDGF released from the polymeric matrix of the particles increased within the detection range of ELISA and mass spectrometry. Beyond PDGF, the sequestration and protection from degradation for a series of additional very low abundance and very labile cytokines were verified. Conclusions and Significance We envision the application of harvesting core-shell nanoparticles to whole blood for concentration and immediate preservation of low abundance and labile analytes at the time of venipuncture.
Journal of the American Chemical Society | 2011
Davide Tamburro; Claudia Fredolini; Virginia Espina; Temple A. Douglas; Adarsh Ranganathan; Leopold L. Ilag; Weidong Zhou; Paul Russo; Benjamin H. Espina; Giovanni Muto; Emanuel F. Petricoin; Lance A. Liotta; Alessandra Luchini
Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core–shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (KD < 10–11 M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable.
Journal of Proteome Research | 2012
Weidong Zhou; Michela Capello; Claudia Fredolini; Leda Racanicchi; Lorenzo Piemonti; Lance A. Liotta; Francesco Novelli; Emanuel F. Petricoin
In this present work, we characterized the proteomes of pancreatic ductal adenocarcinoma (PDAC) cell line PANC-1 and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap and identified more than 1700 proteins from each sample. On the basis of the spectra count label-free quantification approach, we identified a large number of differentially expressed metabolic enzymes and proteins involved in cytoskeleton, cell adhesion, transport, transcription, translation, and cell proliferation as well. The data demonstrated that metabolic pathways were altered in PANC-1, consistent with the Warburg effect. In addition, the comparative MS analysis unveiled anomalous metabolism of glutamine, suggesting that glutamine was largely consumed as a nitrogen donor in nucleotide and amino acid biosynthesis in PANC-1. Our analysis provides a potentially comprehensive picture of metabolism in PANC-1, which may serve as the basis of new diagnostics and treatment of PDAC.
Clinical Biochemistry | 2013
Elisa Pin; Claudia Fredolini; Emanuel F. Petricoin
PURPOSE Prostate Cancer (PCa) represents the second most frequent type of tumor in men worldwide. Incidence increases with patient age and represents the most important risk factor. PCa is mostly characterized by indolence, however in a small percentage of cases (3%) the disease progresses to a metastatic state. To date, the most important issue concerning PCa research is the difficulty in distinguishing indolent from aggressive disease. This problem frequently results in low-grade PCa patient overtreatment and, in parallel; an effective treatment for distant and aggressive disease is not yet available. RESULT Proteomics represents a promising approach for the discovery of new biomarkers able to improve the management of PCa patients. Markers more specific and sensitive than PSA are needed for PCa diagnosis, prognosis and response to treatment. Moreover, proteomics could represent an important tool to identify new molecular targets for PCa tailored therapy. Several possible PCa biomarkers sources, each with advantages and limitations, are under investigation, including tissues, urine, serum, plasma and prostatic fluids. Innovative high-throughput proteomic platforms are now identifying and quantifying new specific and sensitive biomarkers for PCa detection, stratification and treatment. Nevertheless, many putative biomarkers are still far from being applied in clinical practice. CONCLUSIONS This review aims to discuss the recent advances in PCa proteomics, emphasizing biomarker discovery and their application to clinical utility for diagnosis and patient stratification.
Journal of Proteome Research | 2010
Weidong Zhou; Michela Capello; Claudia Fredolini; Lorenzo Piemonti; Lance A. Liotta; Francesco Novelli; Emanuel F. Petricoin
Enolase is a key glycolytic enzyme that catalyzes the dehydration of 2-phosphoglycerate to phosphoenolpyruvate. Recently, enolase was revealed as an important protein in pathophysiological processes since it was found on the surface of hematopoietic cells and overexpressed in several tumor cells. Our previous studies demonstrated that alpha-enolase is up-regulated in pancreatic ductal adenocarcinoma (PDAC). In this present work, we further characterized the alpha-enolase from PDAC and normal pancreatic duct cells by mass spectrometry using LTQ-Orbitrap and identified multiple post-translational modifications of alpha-enolase, such as phosphorylation, acetylation, and methylation. The result showed that more acetylated lysines, methylated aspartic acids, and glutamic acids were found in PDAC cells than that of normal pancreatic duct cells.
Current Molecular Medicine | 2010
Alessandra Luchini; Claudia Fredolini; Benjamin H. Espina; Francesco Meani; A. Reeder; Sally Rucker; Emanuel F. Petricoin; Lance A. Liotta
Clinically relevant biomarkers exist in blood and body fluids in extremely low concentrations, are masked by high abundance high molecular weight proteins, and often undergo degradation during collection and transport due to endogenous and exogenous proteinases. Nanoparticles composed of a N-isopropylacrylamide hydrogel core shell functionalized with internal affinity baits are a new technology that can address all of these critical analytical challenges for disease biomarker discovery and measurement. Core-shell, bait containing, nanoparticles can perform four functions in one step, in solution, in complex biologic fluids (e.g. blood or urine): a) molecular size sieving, b) complete exclusion of high abundance unwanted proteins, c) target analyte affinity sequestration, and d) complete protection of captured analytes from degradation. Targeted classes of protein analytes sequestered by the particles can be concentrated in small volumes to effectively amplify (up to 100 fold or greater depending on the starting sample volume) the sensitivity of mass spectrometry, western blotting, and immunoassays. The materials utilized for the manufacture of the particles are economical, stable overtime, and remain fully soluble in body fluids to achieve virtually 100 percent capture of all solution phase target proteins within a few minutes.
Journal of Proteome Research | 2012
Amol Prakash; Taha Rezai; Bryan Krastins; David Sarracino; Michael Athanas; Paul Russo; Hui Zhang; Yuan Tian; Yan Li; Vathany Kulasingam; Andrei P. Drabovich; Christopher R. Smith; Ihor Batruch; Paul E. Oran; Claudia Fredolini; Alessandra Luchini; Lance A. Liotta; Emanuel F. Petricoin; Eleftherios P. Diamandis; Daniel W. Chan; Randall W. Nelson; Mary F. Lopez
Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.
Aaps Journal | 2010
Claudia Fredolini; Francesco Meani; Alessandra Luchini; Weidong Zhou; Paul Russo; Mark M. Ross; Alexis Patanarut; Davide Tamburro; Guido Gambara; David K. Ornstein; Franco Odicino; Monica Ragnoli; Antonella Ravaggi; Francesco Novelli; Devis Collura; Leonardo D’Urso; Giovanni Muto; Claudio Belluco; Sergio Pecorelli; Lance A. Liotta; Emanuel F. Petricoin
Current efforts to identify protein biomarkers of disease use mainly mass spectrometry (MS) to analyze tissue and blood specimens. The low-molecular-weight “peptidome” is an attractive information archive because of the facile nature by which the low-molecular-weight information freely crosses the endothelial cell barrier of the vasculature, which provides opportunity to measure disease microenvironment-associated protein analytes secreted or shed into the extracellular interstitium and from there into the circulation. However, identifying useful protein biomarkers (peptidomic or not) which could be useful to detect early detection/monitoring of disease, toxicity, doping, or drug abuse has been severely hampered because even the most sophisticated, high-resolution MS technologies have lower sensitivities than those of the immunoassays technologies now routinely used in clinical practice. Identification of novel low abundance biomarkers that are indicative of early-stage events that likely exist in the sub-nanogram per milliliter concentration range of known markers, such as prostate-specific antigen, cannot be readily detected by current MS technologies. We have developed a new nanoparticle technology that can, in one step, capture, concentrate, and separate the peptidome from high-abundance blood proteins. Herein, we describe an initial pilot study whereby the peptidome content of ovarian and prostate cancer patients is investigated with this method. Differentially abundant candidate peptidome biomarkers that appear to be specific for early-stage ovarian and prostate cancer have been identified and reveal the potential utility for this new methodology