Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia G. Benítez-Cardoza is active.

Publication


Featured researches published by Claudia G. Benítez-Cardoza.


Parasitology | 2012

Cellular and biochemical characterization of two closely related triosephosphate isomerases from Trichomonas vaginalis

Elisa E. Figueroa-Angulo; Priscila Estrella-Hernández; Holjes Salgado-Lugo; Adrián Ochoa-Leyva; Armando Gómez Puyou; Silvia S. Campos; Gabriela M. Montero-Morán; Jaime Ortega-López; Gloria Saab-Rincón; Rossana Arroyo; Claudia G. Benítez-Cardoza; Luis G. Brieba

The glycolytic enzyme triosephosphate isomerase catalyses the isomerization between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Here we report that Trichomonas vaginalis contains 2 fully functional tpi genes. Both genes are located in separated chromosomal context with different promoter regulatory elements and encode ORFs of 254 amino acids; the only differences between them are the character of 4 amino acids located in α-helices 1, 2 and 8. Semi-quantitative RT-PCR assays showed that tpi2 transcript is approximately 3·3-fold more abundant than tpi1. Using an anti-TvTIM2 polyclonal antibody it was demonstrated that TIM proteins have a cytoplasmic localization and both enzymes are able to complement an Escherichia coli strain carrying a deletion of its endogenous tpi gene. Both TIM proteins assemble as dimers and their secondary structure assessment is essentially identical to TIM from Saccharomyces cerevisiae. The kinetic catalytic constants of the recombinant enzymes using glyceraldehyde-3-phosphate as substrate are similar to the catalytic constants of TIMs from other organisms including parasitic protozoa. As T. vaginalis depends on glycolysis for ATP production, we speculate 2 possible reasons to maintain a duplicated tpi copy on its genome: an increase in gene dosage or an early event of neofunctionalization of TIM as a moonlighting protein.


Protein Science | 2013

In silico and in vitro studies to elucidate the role of Cu2+ and galanthamine as the limiting step in the amyloid beta (1–42) fibrillation process

Maricarmen Hernández-Rodríguez; José Correa-Basurto; Claudia G. Benítez-Cardoza; Aldo Arturo Reséndiz-Albor; Martha Cecilia Rosales-Hernández

The formation of fibrils and oligomers of amyloid beta (Aβ) with 42 amino acid residues (Aβ1–42) is the most important pathophysiological event associated with Alzheimers disease (AD). The formation of Aβ fibrils and oligomers requires a conformational change from an α‐helix to a β‐sheet conformation, which is encouraged by the formation of a salt bridge between Asp 23 or Glu 22 and Lys 28. Recently, Cu2+ and various drugs used for AD treatment, such as galanthamine (Reminyl®), have been reported to inhibit the formation of Aβ fibrils. However, the mechanism of this inhibition remains unclear. Therefore, the aim of this work was to explore how Cu2+ and galanthamine prevent the formation of Aβ1–42 fibrils using molecular dynamics (MD) simulations (20 ns) and in vitro studies using fluorescence and circular dichroism (CD) spectroscopies. The MD simulations revealed that Aβ1–42 acquires a characteristic U‐shape before the α‐helix to β‐sheet conformational change. The formation of a salt bridge between Asp 23 and Lys 28 was also observed beginning at 5 ns. However, the MD simulations of Aβ1−42 in the presence of Cu2+ or galanthamine demonstrated that both ligands prevent the formation of the salt bridge by either binding to Glu 22 and Asp 23 (Cu2+) or to Lys 28 (galanthamine), which prevents Aβ1−42 from adopting the U‐characteristic conformation that allows the amino acids to transition to a β‐sheet conformation. The docking results revealed that the conformation obtained by the MD simulation of a monomer from the 1Z0Q structure can form similar interactions to those obtained from the 2BGE structure in the oligomers. The in vitro studies demonstrated that Aβ remains in an unfolded conformation when Cu2+ and galanthamine are used. Then, ligands that bind Asp 23 or Glu 22 and Lys 28 could therefore be used to prevent β turn formation and, consequently, the formation of Aβ fibrils.


International Journal of Pharmaceutics | 2015

Evaluation of a combined drug-delivery system for proteins assembled with polymeric nanoparticles and porous microspheres; characterization and protein integrity studies

Sergio Alcalá-Alcalá; Claudia G. Benítez-Cardoza; Enrique J. Lima-Muñoz; Elizabeth Piñón-Segundo; David Quintanar-Guerrero

This work presents an evaluation of the adsorption/infiltration process in relation to the loading of a model protein, α-amylase, into an assembled biodegradable polymeric system, free of organic solvents and made up of poly(D,L-lactide-co-glycolide) acid (PLGA). Systems were assembled in a friendly aqueous medium by adsorbing and infiltrating polymeric nanoparticles into porous microspheres. These assembled systems are able to load therapeutic amounts of the drug through adsorption of the protein onto the large surface area characteristic of polymeric nanoparticles. The subsequent infiltration of nanoparticles adsorbed with the protein into porous microspheres enabled the controlled release of the protein as a function of the amount of infiltrated nanoparticles, since the surface area available on the porous structure is saturated at different levels, thus modifying the protein release rate. Findings were confirmed by both the BET technique (N2 isotherms) and in vitro release studies. During the adsorption process, the pH of the medium plays an important role by creating an environment that favors adsorption between the surfaces of the micro- and nano-structures and the protein. Finally, assays of α-amylase activity using 2-chloro-4-nitrophenyl-α-D-maltotrioside (CNP-G3) as the substrate and the circular dichroism technique confirmed that when this new approach was used no conformational changes were observed in the protein after release.


Journal of Alzheimer's Disease | 2014

Design of Multi-Target Compounds as AChE, BACE1, and Amyloid-β1-42 Oligomerization Inhibitors: In Silico and In Vitro Studies

Maricarmen Hernández-Rodríguez; José Correa-Basurto; Federico Martínez-Ramos; Itzia I. Padilla-Martínez; Claudia G. Benítez-Cardoza; Elvia Mera-Jimenez; Martha Cecilia Rosales-Hernández

Despite great efforts to develop new therapeutic strategies against Alzheimers disease (AD), the acetylcholinesterase inhibitors (AChEIs): donepezil, rivastigmine, and galantamine, have been used only as a palliative therapeutic approach. However, the pathogenesis of AD includes several factors such as cholinergic hypothesis, amyloid-β (Aβ) aggregation, and oxidative stress. For this reason, the design of compounds that target the genesis and progression of AD could offer a therapeutic benefit. We have designed a set of compounds (M-1 to M-5) with pharmacophore moieties to inhibit the release, aggregation, or toxicity of Aβ, act as AChEIs and have antioxidant properties. Once the compounds were designed, we analyzed their physicochemical parameters and performed docking studies to determine their affinity values for AChE, β-site amyloid-protein precursor cleaving enzyme 1 (BACE1), and the Aβ monomer. The best ligands, M-1 and M-4, were then synthesized, chemically characterized, and evaluated in vitro. The in vitro studies showed that these compounds inhibit AChE (M-1 Ki = 0.12 and M-4 Ki = 0.17 μM) and BACE1 (M-1 IC50 = 15.1 and M-4 IC50 = 15.4 nM). They also inhibit Aβ oligomerization and exhibit antioxidant activity. In addition, these compounds showed low cytotoxicity in microglial cells. For these reasons, they are promising for future use as drugs in AD mice transgenic models.


Infection and Immunity | 2016

The Glycolytic Enzyme Triosephosphate Isomerase of Trichomonas vaginalis Is a Surface-Associated Protein Induced by Glucose That Functions as a Laminin- and Fibronectin-Binding Protein

Jesús F. T. Miranda-Ozuna; Mar Saraí Hernández-García; Luis G. Brieba; Claudia G. Benítez-Cardoza; Jaime Ortega-López; Arturo González-Robles; Rossana Arroyo

ABSTRACT Triosephosphate isomerase of Trichomonas vaginalis (TvTIM) is a 27-kDa cytoplasmic protein encoded by two genes, tvtim1 and tvtim2, that participates in glucose metabolism. TvTIM is also localized to the parasite surface. Thus, the goal of this study was to identify the novel functions of the surface-associated TvTIM in T. vaginalis and to assess the effect of glucose as an environmental factor that regulates its expression and localization. Reverse transcription-PCR (RT-PCR) showed that the tvtim genes were differentially expressed in response to glucose concentration. tvtim1 was overexpressed under glucose-restricted (GR) conditions, whereas tvtim2 was overexpressed under glucose-rich, or high-glucose (HG), conditions. Western blot and indirect immunofluorescence assays also showed that glucose positively affected the amount and surface localization of TvTIM in T. vaginalis. Affinity ligand assays demonstrated that the recombinant TvTIM1 and TvTIM2 proteins bound to laminin (Lm) and fibronectin (Fn) but not to plasminogen. Moreover, higher levels of adherence to Lm and Fn were detected in parasites grown under HG conditions than in those grown under GR conditions. Furthermore, pretreatment of trichomonads with an anti-TvTIMr polyclonal antibody or pretreatment of Lm- or Fn-coated wells with both recombinant proteins (TvTIM1r and TvTIM2r) specifically reduced the binding of live parasites to Lm and Fn in a concentration-dependent manner. Moreover, T. vaginalis was exposed to different glucose concentrations during vaginal infection of women with trichomoniasis. Our data indicate that TvTIM is a surface-associated protein under HG conditions that mediates specific binding to Lm and Fn as a novel virulence factor of T. vaginalis.


Protein Science | 2011

Insights into the structural stability of Bax from molecular dynamics simulations at high temperatures

Jorge L. Rosas-Trigueros; José Correa-Basurto; Claudia G. Benítez-Cardoza; Absalom Zamorano-Carrillo

Bax is a member of the Bcl‐2 protein family that participates in mitochondrion‐mediated apoptosis. In the early stages of the apoptotic pathway, this protein migrates from the cytosol to the outer mitochondrial membrane, where it is inserted and usually oligomerizes, making cytochrome c‐compatible pores. Although several cellular and structural studies have been reported, a description of the stability of Bax at the molecular level remains elusive. This article reports molecular dynamics simulations of monomeric Bax at 300, 400, and 500 K, focusing on the most relevant structural changes and relating them to biological experimental results. Bax gradually loses its α‐helices when it is submitted to high temperatures, yet it maintains its globular conformation. The resistance of Bax to adopt an extended conformation could be due to several interactions that were found to be responsible for maintaining the structural stability of this protein. Among these interactions, we found salt bridges, hydrophobic interactions, and hydrogen bonds. Remarkably, salt bridges were the most relevant to prevent the elongation of the structure. In addition, the analysis of our results suggests which conformational movements are implicated in the activation/oligomerization of Bax. This atomistic description might have important implications for understanding the functionality and stability of Bax in vitro as well as within the cellular environment.


Proteins | 2014

Structural and thermodynamic folding characterization of triosephosphate isomerases from Trichomonas vaginalis reveals the role of destabilizing mutations following gene duplication

Samuel Lara-González; Priscila Estrella-Hernández; Adrián Ochoa-Leyva; María del Carmen Portillo-Téllez; Luis A. Caro-Gómez; Elisa E. Figueroa-Angulo; Holjes Salgado-Lugo; Jesús F. T. Miranda Ozuna; Jaime Ortega-López; Rossana Arroyo; Luis G. Brieba; Claudia G. Benítez-Cardoza

We report the structures and thermodynamic analysis of the unfolding of two triosephosphate isomerases (TvTIM1 and TvTIM2) from Trichomonas vaginalis. Both isoforms differ by the character of four amino acids: E/Q 18, I/V 24, I/V 45, and P/A 239. Despite the high sequence and structural similarities between both isoforms, they display substantial differences in their stabilities. TvTIM1 (E18, I24, I45, and P239) is more stable and less dissociable than TvTIM2 (Q18, V24, V45, and A239). We postulate that the identities of residues 24 and 45 are responsible for the differences in monomer stability and dimer dissociability, respectively. The structural difference between both amino acids is one methyl group. In TvTIMs, residue 24 is involved in packing α‐helix 1 against α‐helix 2 of each monomer and residue 45 is located at the center of the dimer interface forming a “ball and socket” interplay with a hydrophobic cavity. The mutation of valine at position 45 for an alanine in TvTIM2 produces a protein that migrates as a monomer by gel filtration. A comparison with known TIM structures indicates that this kind of interplay is a conserved feature that stabilizes dimeric TIM structures. In addition, TvTIMs are located in the cytoplasm and in the membrane. As TvTIM2 is an easily dissociable dimer, the dual localization of TvTIMs may be related to the acquisition of a moonlighting activity of monomeric TvTIM2. To our knowledge, this is the simplest example of how a single amino acid substitution can provide alternative function to a TIM barrel protein. Proteins 2014; 82:22–33.


European Journal of Cell Biology | 2014

Epithelial sodium channel modulates platelet collagen activation

Doris Cerecedo; Ivette Martínez-Vieyra; Lea Alonso-Rangel; Claudia G. Benítez-Cardoza; Arturo Ortega

Activated platelets adhere to the exposed subendothelial extracellular matrix and undergo a rapid cytoskeletal rearrangement resulting in shape change and release of their intracellular dense and alpha granule contents to avoid hemorrhage. A central step in this process is the elevation of the intracellular Ca(2+) concentration through its release from intracellular stores and on throughout its influx from the extracellular space. The Epithelial sodium channel (ENaC) is a highly selective Na(+) channel involved in mechanosensation, nociception, fluid volume homeostasis, and control of arterial blood pressure. The present study describes the expression, distribution, and participation of ENaC in platelet migration and granule secretion using pharmacological inhibition with amiloride. Our biochemical and confocal analysis in suspended and adhered platelets suggests that ENaC is associated with Intermediate filaments (IF) and with Dystrophin-associated proteins (DAP) via α-syntrophin and β-dystroglycan. Migration assays, quantification of soluble P-selectin, and serotonin release suggest that ENaC is dispensable for migration and alpha and dense granule secretion, whereas Na(+) influx through this channel is fundamental for platelet collagen activation.


The International Journal of Biochemistry & Cell Biology | 2015

The recombinant prepro region of TvCP4 is an inhibitor of cathepsin L-like cysteine proteinases of Trichomonas vaginalis that inhibits trichomonal haemolysis

Rosa Elena Cárdenas-Guerra; Jaime Ortega-López; Claudia Ivonne Flores-Pucheta; Claudia G. Benítez-Cardoza; Rossana Arroyo

Trichomonas vaginalis expresses multiple proteinases, mainly of the cysteine type (CPs). A cathepsin L-like 34kDa CP, designated TvCP4, is synthesized as a 305-amino-acid precursor protein. TvCP4 contains the prepro fragment and the catalytic triad that is typical of the papain-like CP family of clan CA. The aim of this work was to determine the function of the recombinant TvCP4 prepro region (ppTvCP4r) as a specific inhibitor of CPs. We cloned, expressed, and purified the recombinant TvCP4 prepro region. The conformation of the purified and refolded ppTvCP4r polypeptide was verified by circular dichroism spectroscopy and fluorescence emission spectra. The inhibitory effect of ppTvCP4r was tested on protease-resistant extracts from T. vaginalis using fluorogenic substrates for cathepsin L and legumain CPs. In 1-D zymograms, the inhibitory effect of ppTvCP4r on trichomonad CP proteolytic activity was observed in the ∼97, 65, 39, and 30 kDa regions. By using 2-D zymograms and mass spectrometry, several of the CPs inhibited by ppTvCP4r were identified. A clear reduction in the proteolytic activity of several cathepsin L-like protein spots (TvCP2, TvCP4, TvCP4-like, and TvCP39) was observed compared with the control zymogram. Moreover, pretreatment of live parasites with ppTvCP4r inhibited trichomonal haemolysis in a concentration dependent manner. These results confirm that the recombinant ppTvCP4 is a specific inhibitor of the proteolytic activity of cathepsin L-like T. vaginalis CPs that is useful for inhibiting virulence properties depending on clan CA papain-like CPs.


PLOS ONE | 2015

Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

Samuel Lara-González; Priscilla Estrella; Carmen J. Portillo; María E. Cruces; Pedro Jimenez-Sandoval; Juliana Fattori; Ana C. Migliorini-Figueira; Marisol López-Hidalgo; Corina Diaz-Quezada; Margarita Lopez-Castillo; Carlos H. Trasviña-Arenas; Eugenia Sánchez-Sandoval; Armando Gómez-Puyou; Jaime Ortega-López; Rossana Arroyo; Claudia G. Benítez-Cardoza; Luis G. Brieba

The dimeric nature of triosephosphate isomerases (TIMs) is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM) are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A) is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

Collaboration


Dive into the Claudia G. Benítez-Cardoza's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaime Ortega-López

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

José Correa-Basurto

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Rossana Arroyo

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Adrián Ochoa-Leyva

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Brenda Chimal-Vega

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar

Elisa E. Figueroa-Angulo

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge