Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Halsband is active.

Publication


Featured researches published by Claudia Halsband.


Marine Pollution Bulletin | 2011

Microplastics as contaminants in the marine environment: A review

Matthew Cole; Pennie Lindeque; Claudia Halsband; Tamara S. Galloway

Since the mass production of plastics began in the 1940s, microplastic contamination of the marine environment has been a growing problem. Here, a review of the literature has been conducted with the following objectives: (1) to summarise the properties, nomenclature and sources of microplastics; (2) to discuss the routes by which microplastics enter the marine environment; (3) to evaluate the methods by which microplastics are detected in the marine environment; (4) to assess spatial and temporal trends of microplastic abundance; and (5) to discuss the environmental impact of microplastics. Microplastics are both abundant and widespread within the marine environment, found in their highest concentrations along coastlines and within mid-ocean gyres. Ingestion of microplastics has been demonstrated in a range of marine organisms, a process which may facilitate the transfer of chemical additives or hydrophobic waterborne pollutants to biota. We conclude by highlighting key future research areas for scientists and policymakers.


Scientific Reports | 2015

Isolation of microplastics in biota-rich seawater samples and marine organisms

Matthew Cole; Hannah J Webb; Pennie Lindeque; Elaine S. Fileman; Claudia Halsband; Tamara S. Galloway

Microplastic litter is a pervasive pollutant present in aquatic systems across the globe. A range of marine organisms have the capacity to ingest microplastics, resulting in adverse health effects. Developing methods to accurately quantify microplastics in productive marine waters, and those internalized by marine organisms, is of growing importance. Here we investigate the efficacy of using acid, alkaline and enzymatic digestion techniques in mineralizing biological material from marine surface trawls to reveal any microplastics present. Our optimized enzymatic protocol can digest >97% (by weight) of the material present in plankton-rich seawater samples without destroying any microplastic debris present. In applying the method to replicate marine samples from the western English Channel, we identified 0.27 microplastics m−3. The protocol was further used to extract microplastics ingested by marine zooplankton under laboratory conditions. Our findings illustrate that enzymatic digestion can aid the detection of microplastic debris within seawater samples and marine biota.


Philosophical Transactions of the Royal Society A | 2012

Assessing wave energy effects on biodiversity: the Wave Hub experience

Matthew J. Witt; Emma V. Sheehan; Stuart Bearhop; Annette C. Broderick; Daniel Conley; Stephen P. Cotterell; E. Crow; W. J. Grecian; Claudia Halsband; David J. Hodgson; Phil Hosegood; Richard Inger; Peter I. Miller; David W. Sims; Richard C. Thompson; K. Vanstaen; Stephen C. Votier; Martin J. Attrill; Brendan J. Godley

Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects—both positive and negative.


Marine Drugs | 2011

The Relevance of Marine Chemical Ecology to Plankton and Ecosystem Function: An Emerging Field

Adrianna Ianora; Matthew G. Bentley; Gary S. Caldwell; Raffaella Casotti; Allan Cembella; Jonna Engström-Öst; Claudia Halsband; Eva C. Sonnenschein; Catherine Legrand; Carole A. Llewellyn; Renata Pilkaityte; Georg Pohnert; Arturas Razinkovas; Giovanna Romano; Urban Tillmann; Diana Vaiciute

Marine chemical ecology comprises the study of the production and interaction of bioactive molecules affecting organism behavior and function. Here we focus on bioactive compounds and interactions associated with phytoplankton, particularly bloom-forming diatoms, prymnesiophytes and dinoflagellates. Planktonic bioactive metabolites are structurally and functionally diverse and some may have multiple simultaneous functions including roles in chemical defense (antipredator, allelopathic and antibacterial compounds), and/or cell-to-cell signaling (e.g., polyunsaturated aldehydes (PUAs) of diatoms). Among inducible chemical defenses in response to grazing, there is high species-specific variability in the effects on grazers, ranging from severe physical incapacitation and/or death to no apparent physiological response, depending on predator susceptibility and detoxification capability. Most bioactive compounds are present in very low concentrations, in both the producing organism and the surrounding aqueous medium. Furthermore, bioactivity may be subject to synergistic interactions with other natural and anthropogenic environmental toxicants. Most, if not all phycotoxins are classic secondary metabolites, but many other bioactive metabolites are simple molecules derived from primary metabolism (e.g., PUAs in diatoms, dimethylsulfoniopropionate (DMSP) in prymnesiophytes). Producing cells do not seem to suffer physiological impact due to their synthesis. Functional genome sequence data and gene expression analysis will provide insights into regulatory and metabolic pathways in producer organisms, as well as identification of mechanisms of action in target organisms. Understanding chemical ecological responses to environmental triggers and chemically-mediated species interactions will help define crucial chemical and molecular processes that help maintain biodiversity and ecosystem functionality.


Environmental Science & Technology | 2016

Microplastics Alter the Properties and Sinking Rates of Zooplankton Faecal Pellets

Matthew Cole; Penelope K. Lindeque; Elaine S. Fileman; James R. Clark; Ceri Lewis; Claudia Halsband; Tamara S. Galloway

Plastic debris is a widespread contaminant, prevalent in aquatic ecosystems across the globe. Zooplankton readily ingest microscopic plastic (microplastic, < 1 mm), which are later egested within their faecal pellets. These pellets are a source of food for marine organisms, and contribute to the oceanic vertical flux of particulate organic matter as part of the biological pump. The effects of microplastics on faecal pellet properties are currently unknown. Here we test the hypotheses that (1) faecal pellets are a vector for transport of microplastics, (2) polystyrene microplastics can alter the properties and sinking rates of zooplankton egests and, (3) faecal pellets can facilitate the transfer of plastics to coprophagous biota. Following exposure to 20.6 μm polystyrene microplastics (1000 microplastics mL(-1)) and natural prey (∼1650 algae mL(-1)) the copepod Calanus helgolandicus egested faecal pellets with significantly (P < 0.001) reduced densities, a 2.25-fold reduction in sinking rates, and a higher propensity for fragmentation. We further show that microplastics, encapsulated within egests of the copepod Centropages typicus, could be transferred to C. helgolandicus via coprophagy. Our results support the proposal that sinking faecal matter represents a mechanism by which floating plastics can be vertically transported away from surface waters.


Marine Pollution Bulletin | 2013

Potential acidification impacts on zooplankton in CCS leakage scenarios

Claudia Halsband; Haruko Kurihara

Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle.


Frontiers in Marine Science | 2015

Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009)

Emma L. Orlova; Andrey V. Dolgov; Paul E. Renaud; Michael Greenacre; Claudia Halsband; Victor A. Ivshin

Euphausiids play an important role in transferring energy from ephemeral primary producers to fish, seabirds, and marine mammals in the Barents Sea ecosystem. Climatic impacts have been suggested to occur at all levels of the Barents Sea food-web, but adequate exploration of these phenomena on ecologically relevant spatial scales has not been integrated sufficiently. We used a time-series of euphausiid abundance data spanning 58 years, one of the longest biological time-series in the Arctic, to explore qualitative and quantitative relationships among climate, euphausiids, and their predators, and how these parameters vary spatially in the Barents Sea. We detected four main hydrographic regions, each with distinct patterns of interannual variability in euphausiid abundance and community structure. Assemblages varied primarily in the relative abundance of Thysanoessa inermis versus T. raschii, or T. inermis versus T. longicaudata and Meganyctiphanes norvegica. Climate proxies and the abundance of capelin or cod explained 30-60% of the variability in euphausiid abundance in each region. Climate also influenced patterns of variability in euphausiid community structure, but correlations were generally weaker. Advection of boreal euphausiid taxa from the Norwegian Sea is clearly more prominent in warmer years than in colder years, and interacts with seasonal fish migrations to help explain spatial differences in primary drivers of euphausiid community structure. Non-linear effects of predators were common, and must be considered more carefully if a mechanistic understanding of the ecosystem is to be achieved. Quantitative relationships among euphausiid abundance, climate proxies, and predator stock-sizes derived from these time series are valuable for ecological models being used to predict impacts of climate change on the Barents Sea ecosystem, and how the system should be managed.


Marine Biology Research | 2018

Interannual phenological variability in two North-East Atlantic populations of Calanus finmarchicus

Marina Espinasse; Claudia Halsband; Øystein Varpe; Astthor Gislason; Kristinn Gudmundsson; Stig Falk-Petersen; Ketil Eiane

ABSTRACT Phenological variations of the marine copepod Calanus finmarchicus were studied in Svalbard and northern Iceland, where samples were collected in summer and spring, respectively, over two decades. Four phenological indices, developed for copepodite stage-structured data, were used: the proportion of CV to total abundance (CVT), the population development index (PDI), the average weighted stage (AWS), and the average age in days (AAD). The variation of these indices was compared within and between locations to evaluate their suitability for the analysis of phenological effects. For both populations, phenology was related to local temperature and spring bloom dynamics, influenced by Atlantic water inflow. Large-scale climate was related to phenological variation only in the Svalbard population. C. finmarchicus phenology advanced under warmer conditions in both locations. We conclude that vertical phenological indices, i.e. based on interannual changes in copepodite stage structure, are useful to investigate zooplankton phenology, especially when data series covering the whole life cycle are unavailable. We suggest that AWS and AAD can be applied irrespective of sampling time, while PDI and CVT should be applied for early and late sampling seasons, respectively. When multiple phenological indices are needed, AAD in combination with either CVT or PDI should be preferred.


Ices Journal of Marine Science | 2018

Pelagic food-webs in a changing Arctic: a trait-based perspective suggests a mode of resilience

Paul E. Renaud; Malin Daase; Neil S. Banas; Tove M. Gabrielsen; Janne E. Søreide; Øystein Varpe; Finlo Cottier; Stig Falk-Petersen; Claudia Halsband; Daniel Vogedes; Kristin Heggland; Jørgen Berge

Arctic marine ecosystems support fisheries of significant and increasing economic and nutritional value. Commercial stocks are sustained by pelagic food webs with relatively few keystone taxa mediating energy transfer to higher trophic levels, and it remains largely unknown how these taxa will be affected by changing climate and the influx of boreal taxa. Calanus species store large quantities of lipids, making these zooplankton a critical link in marine food-webs. The Arctic Calanus species are usually larger and, importantly, have been suggested to contain disproportionately larger lipid stores than their boreal congeners. Continued climate warming and subsequent changes in primary production regimes have been predicted to lead to a shift from the larger, lipid-rich Arctic species, Calanus glacialis and Calanus hyperboreus, toward the smaller, boreal Calanus finmarchicus in the European Arctic, with negative consequences for top predators. Our data show that lipid content is closely related to body size for all three species, i.e. is not a species-specific trait, and that there is considerable overlap in size between C. finmarchicus and C. glacialis. A trait-based life-history model was used to examine an idealized scenario where, in a changed Arctic with a longer period of primary production, C. glacialis- and C. hyperboreus-like copepods are indeed replaced by C. finmarchicus-like individuals, whether through competition, plasticity, hybridization, or evolution. However, the model finds that transfer of energy from primary producers to higher predators may actually be more efficient in this future scenario, because of the changes in generation length and population turnover rate that accompany the body-size shifts. These findings suggest that Arctic marine food webs may be more resilient to climate-related shifts in the Calanus complex than previously assumed.


Archive | 2017

Micro-and macro-plastics in marine species from Nordic waters

Inger Lise N. Bråte; Bastian Huwer; Kevin V. Thomas; David P. Eidsvoll; Claudia Halsband; Bethanie Carney Almroth; Amy L. Lusher

This report summarises the knowledge on plastics in Nordic marine species. Nordic biota interacts with plastic pollution, through entanglement and ingestion. Ingestion has been found in many seabir ...

Collaboration


Dive into the Claudia Halsband's collaboration.

Top Co-Authors

Avatar

Elaine S. Fileman

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew Cole

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pennie Lindeque

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar

Paul E. Renaud

University Centre in Svalbard

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Øystein Varpe

University Centre in Svalbard

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge