Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Landi is active.

Publication


Featured researches published by Claudia Landi.


Journal of Proteomics | 2009

Solubilization methods and reference 2-DE map of cow milk fat globules

Laura Bianchi; Michele Puglia; Claudia Landi; Silvia Matteoni; Daniele Perini; Alessandro Armini; Margherita Verani; Claudia Maria Trombetta; Patrizia Soldani; Paola Roncada; Gianfranco Greppi; Vitaliano Pallini; Luca Bini

Milk fat globules (MFGs) are secretory vesicles assembled and secreted by mammary epithelial cells during lactation. They consist of fat globules surrounded by a lipid bilayer membrane which is derived from the apical membrane of the lactating cells. MFGs contain, besides lipids, proteins from the apical plasma membrane and from the cytoplasmatic material. Their peculiar vesicle nature makes them a suitable and easily available source of biological material in monitoring the physiopathological state of the mammary gland. Unfortunately, the conspicuous lipidic component of MFGs consistently limits protein extraction and purification for MFG proteomic investigations. This work deals with the development of a suitable procedure for protein extraction from the cow MFGs in order to qualitatively and quantitatively improve 2-D electropherograms of the MFG. MFGs were purified from raw milk by centrifugation and then delipidated/precipitated. The resulting protein pellets were solubilised using four different 2-D SDS PAGE compatible lysis buffers. Applied methodological procedures for protein extraction and evaluation of the resulting 2-D protein-pattern are presented and discussed. Using these procedures a reference 2-D map of cow milk fat globules is also reported. The majority of the obtained identifications was represented by proteins involved in lipid synthesis or in fat globule secretion.


Mediators of Inflammation | 2014

Subclinical inflammatory status in Rett syndrome.

Alessio Cortelazzo; Claudio De Felice; Roberto Guerranti; Cinzia Signorini; Silvia Leoncini; Alessandra Pecorelli; Gloria Zollo; Claudia Landi; Giuseppe Valacchi; Lucia Ciccoli; Luca Bini; Joussef Hayek

Inflammation has been advocated as a possible common central mechanism for developmental cognitive impairment. Rett syndrome (RTT) is a devastating neurodevelopmental disorder, mainly caused by de novo loss-of-function mutations in the gene encoding MeCP2. Here, we investigated plasma acute phase response (APR) in stage II (i.e., “pseudo-autistic”) RTT patients by routine haematology/clinical chemistry and proteomic 2-DE/MALDI-TOF analyses as a function of four major MECP2 gene mutation types (R306C, T158M, R168X, and large deletions). Elevated erythrocyte sedimentation rate values (median 33.0 mm/h versus 8.0 mm/h, P < 0.0001) were detectable in RTT, whereas C-reactive protein levels were unchanged (P = 0.63). The 2-DE analysis identified significant changes for a total of 17 proteins, the majority of which were categorized as APR proteins, either positive (n = 6 spots) or negative (n = 9 spots), and to a lesser extent as proteins involved in the immune system (n = 2 spots), with some proteins having overlapping functions on metabolism (n = 7 spots). The number of protein changes was proportional to the severity of the mutation. Our findings reveal for the first time the presence of a subclinical chronic inflammatory status related to the “pseudo-autistic” phase of RTT, which is related to the severity carried by the MECP2 gene mutation.


Scientific Reports | 2016

Zebrafish Collagen Type I: Molecular and Biochemical Characterization of the Major Structural Protein in Bone and Skin.

Charlotte Gistelinck; Roberta Gioia; Assunta Gagliardi; Francesca Tonelli; Loredana Marchese; Laura Bianchi; Claudia Landi; Luca Bini; Ann Huysseune; Paul Witten; An Staes; Kris Gevaert; N. De Rocker; Björn Menten; Fransiska Malfait; Sergey Leikin; Silvia Carra; Ruggero Tenni; Antonio Rossi; A. De Paepe; Paul Coucke; Andy Willaert; Antonella Forlino

Over the last years the zebrafish imposed itself as a powerful model to study skeletal diseases, but a limit to its use is the poor characterization of collagen type I, the most abundant protein in bone and skin. In tetrapods collagen type I is a trimer mainly composed of two α1 chains and one α2 chain, encoded by COL1A1 and COL1A2 genes, respectively. In contrast, in zebrafish three type I collagen genes exist, col1a1a, col1a1b and col1a2 coding for α1(I), α3(I) and α2(I) chains. During embryonic and larval development the three collagen type I genes showed a similar spatio-temporal expression pattern, indicating their co-regulation and interdependence at these stages. In both embryonic and adult tissues, the presence of the three α(I) chains was demonstrated, although in embryos α1(I) was present in two distinct glycosylated states, suggesting a developmental-specific collagen composition. Even though in adult bone, skin and scales equal amounts of α1(I), α3(I) and α2(I) chains are present, the presented data suggest a tissue-specific stoichiometry and/or post-translational modification status for collagen type I. In conclusion, this data will be useful to properly interpret results and insights gained from zebrafish models of skeletal diseases.


Proteomics Clinical Applications | 2014

A system biology study of BALF from patients affected by idiopathic pulmonary fibrosis (IPF) and healthy controls

Claudia Landi; Elena Bargagli; Alfonso Carleo; Laura Bianchi; Assunta Gagliardi; Antje Prasse; Maria Grazia Perari; Rosa Metella Refini; Luca Bini; Paola Rottoli

Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease characterized by progressive loss of the alveolar integrity, recruitment, and activation of myofibroblast, and excessive collagen deposition that resulted in loss of parenchymal architecture and lung function. Although etiology is unknown, major risk factor of disease development is represented by cigarette smoke or exposure to dust.


Journal of Clinical Bioinformatics | 2011

Proteome analysis of bronchoalveolar lavage in pulmonary langerhans cell histiocytosis

Claudia Landi; Elena Bargagli; Barbara Magi; Antje Prasse; Joachim Müller-Quernheim; Luca Bini; Paola Rottoli

BackgroundPulmonary Langerhans-cell histiocytosis (PLCH) is a rare interstitial lung disease characterized by clusters of Langerhans cells, organized in granulomas, in the walls of distal bronchioles. It is a diffuse lung disease related to tobacco smoking but otherwise of unknown etiopathogenesis.MethodsIn this study we used a proteomic approach to analyze BAL protein composition of patients with PLCH and of healthy smoker and non-smoker controls to obtain insights into the pathogenetic mechanisms of the disease, to study the effect of cigarette smoking on susceptibility to PLCH and to identify potential new biomarkers.ResultsTwo-dimensional electrophoresis and image analysis revealed proteins that were differently expressed (quantitatively and qualitatively) in the three groups of subjects. The proteins were identified by mass spectrometry and have various functions (antioxidant, proinflammatory, antiprotease) and origins (plasma, locally produced, etc.). Many, such as protease inhibitors (human serpin B3) and antioxidant proteins (glutathione peroxidase and thioredoxin) are already linked to PLCH pathogenesis, whereas other proteins have never been associated with the disease. Interestingly, numerous proteolytic fragments of plasma proteins (including kininogen-1 N fragments and haptoglobin) were also identified and suggest increased proteolytic activity in this inflammatory lung disease. Differences in protein expression were found between the three groups and confirmed by Principal Component Analysis (PCA).ConclusionAnalysis of BAL proteomes of PLCH patients and of smoker and non-smoker controls also proved to be useful for researching the pathogenetic mechanisms and for identifying biomarkers of this rare diffuse lung disease.


Expert Reviews in Molecular Medicine | 2016

Protein pathways working in human follicular fluid: the future for tailored IVF?

Laura Bianchi; Assunta Gagliardi; Claudia Landi; Riccardo Focarelli; Vincenzo De Leo; Alice Luddi; Luca Bini; Paola Piomboni

The human follicular fluid (HFF) contains molecules and proteins that may affect follicle growth, oocyte maturation and competence acquiring. Despite the numerous studies, an integrated broad overview on biomolecular and patho/physiological processes that are proved or supposed to take place in HFF during folliculogenesis and oocyte development is still missing. In this review we report, for the first time, all the proteins unambiguously detected in HFF and, applying DAVID (Database for Annotation, Visualization and Integrated Discovery) and MetaCore bioinformatic resources, we shed new lights on their functional correlation, delineating protein patterns and pathways with reasonable potentialities for oocyte quality estimation in in vitro fertilisation (IVF) programs. Performing a rigorous PubMed search, we redacted a list of 617 unique proteins unambiguously-annotated as HFF components. Their functional processing suggested the occurrence in HFF of a tight and highly dynamic functional-network, which is balanced by specific effectors, primarily involved in extracellular matrix degradation and remodelling, inflammation and coagulation. Metalloproteinases, thrombin and vitamin-D-receptor/retinoid-X-receptor-alpha resulted as the main key factors in the nets and their differential activity may be indicative of ovarian health and oocyte quality. Despite future accurate clinical investigations are absolutely needed, the present analysis may provide a starting point for more accurate oocyte quality estimation and for defining personalised therapies in reproductive medicine.


Current Opinion in Pulmonary Medicine | 2009

Proteomic analysis in interstitial lung diseases: a review.

Paola Rottoli; Elena Bargagli; Claudia Landi; Barbara Magi

Purpose of review This article aims to review the most recent proteomic findings in tissue and biological fluids and application of new technologies for the study of interstitial lung diseases. Recent findings New insights into lung cell biology as well as novel pathogenetic pathways of different interstitial lung diseases, potential targets of treatment and specific biomarkers discovered by proteomics have been reported. Proteomics has been applied to different kinds of biological fluids and the most promising material for proteomic analysis of interstitial lung disease is currently bronchoalveolar lavage fluid. Summary The results from proteomic studies on this field could be useful in clinical practice for diagnosis, disease progression and severity of interstitial lung diseases.


Frontiers in Plant Science | 2016

New Insight into Quinoa Seed Quality under Salinity: Changes in Proteomic and Amino Acid Profiles, Phenolic Content, and Antioxidant Activity of Protein Extracts

Iris Aloisi; Luigi Parrotta; Karina B. Ruiz; Claudia Landi; Luca Bini; Giampiero Cai; Stefania Biondi; Stefano Del Duca

Quinoa (Chenopodium quinoa Willd) is an ancient Andean seed-producing crop well known for its exceptional nutritional properties and resistance to adverse environmental conditions, such as salinity and drought. Seed storage proteins, amino acid composition, and bioactive compounds play a crucial role in determining the nutritional value of quinoa. Seeds harvested from three Chilean landraces of quinoa, one belonging to the salares ecotype (R49) and two to the coastal-lowlands ecotype, VI-1 and Villarrica (VR), exposed to two levels of salinity (100 and 300 mM NaCl) were used to conduct a sequential extraction of storage proteins in order to obtain fractions enriched in albumins/globulins, 11S globulin and in prolamin-like proteins. The composition of the resulting protein fractions was analyzed by one- and two-dimensional polyacrylamide gel electrophoresis. Results confirmed a high polymorphism in seed storage proteins; the two most representative genotype-specific bands of the albumin/globulin fraction were the 30- and 32-kDa bands, while the 11S globulin showed genotype-specific polymorphism for the 40- and 42-kDa bands. Spot analysis by mass spectrometry followed by in silico analyses were conducted to identify the proteins whose expression changed most significantly in response to salinity in VR. Proteins belonging to several functional categories (i.e., stress protein, metabolism, and storage) were affected by salinity. Other nutritional and functional properties, namely amino acid profiles, total polyphenol (TPC) and flavonoid (TFC) contents, and antioxidant activity (AA) of protein extracts were also analyzed. With the exception of Ala and Met in R49, all amino acids derived from protein hydrolysis were diminished in seeds from salt-treated plants, especially in landrace VI-1. By contrast, several free amino acids were unchanged or increased by salinity in R49 as compared with VR and VI-1, suggesting a greater tolerance in the salares landrace. VR had the highest TPC and AA under non-saline conditions. Salinity increased TPC in all three landraces, with the strongest increase occurring in R49, and enhanced radical scavenging capacity in R49 and VR. Overall, results show that salinity deeply altered the seed proteome and amino acid profiles and, in general, increased the concentration of bioactive molecules and AA of protein extracts in a genotype-dependent manner.


Human Molecular Genetics | 2015

Altered cytoskeletal organization characterized lethal but not surviving Brtl+/− mice: insight on phenotypic variability in osteogenesis imperfecta

Laura Bianchi; Assunta Gagliardi; Silvia Maruelli; Roberta Besio; Claudia Landi; Roberta Gioia; Kenneth M. Kozloff; Basma Khoury; Paul Coucke; Sofie Symoens; Joan C. Marini; Antonio Rossi; Luca Bini; Antonella Forlino

Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl(+/-) to investigate the molecular basis of OI phenotypic variability. Brtl(+/-) resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl(+/-) mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl(+/-) lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment.


Journal of Proteomics | 2012

Differential response to intracellular stress in the skin from osteogenesis imperfecta Brtl mice with lethal and non lethal phenotype: A proteomic approach☆

Laura Bianchi; Assunta Gagliardi; Roberta Gioia; Roberta Besio; Chiara Tani; Claudia Landi; Maria Cipriano; Anna Gimigliano; Antonio Rossi; Joan C. Marini; Antonella Forlino; Luca Bini

Phenotypic variability in the presence of an identical molecular defect is a recurrent feature in heritable disorders and it was also reported in osteogenesis imperfecta (OI). OI is a prototype for skeletal dysplasias mainly caused by mutations in the two genes coding for type I collagen. No definitive cure is available for this disorder, but the understanding of molecular basis in OI phenotypic modulation will have a pivotal role in identifying possible targets to develop novel drug therapy. We used a functional proteomic approach to address the study of phenotypic variability using the skin of the OI murine model Brtl. Brtl mice reproduce the molecular defect, dominant transmission and phenotypic variability of human OI patients. In the presence of a Gly349Cys substitution in α1(I)-collagen Brtl mice can have a lethal or a moderately severe outcome. Differential expression of chaperones, proteasomal subunits, metabolic enzymes, and proteins related to cellular fate demonstrated that a different ability to adapt to cellular stress distinguished mutant from wild-type mice and mutant lethal from surviving mutant animals. Interestingly, class discovery analysis identified clusters of differentially expressed proteins associated with a specific outcome, and functional analysis contributed to a deeper investigation into biochemical and cellular pathways affected by the disease. This article is part of a Special Issue entitled: Translational Proteomics.

Collaboration


Dive into the Claudia Landi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge