Cláudia M. B. Andrade
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cláudia M. B. Andrade.
BMC Evolutionary Biology | 2011
Andreia Carina Turchetto-Zolet; Felipe dos Santos Maraschin; Guilherme Loss de Morais; Alexandro Cagliari; Cláudia M. B. Andrade; Marcia Margis-Pinheiro; Rogério Margis
BackgroundTriacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin.ResultsWe have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events.ConclusionsIn this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.
Plant Cell and Environment | 2013
Rafael Augusto Arenhart; Júlio César de Lima; Marcelo Pedron; Fabricio E. L. Carvalho; Joaquim Albenisio Gomes Silveira; Silvia Barcelos Rosa; Andréia Caverzan; Cláudia M. B. Andrade; Mariana Schünemann; Rogério Margis; Marcia Margis-Pinheiro
Among cereal crops, rice is considered the most tolerant to aluminium (Al). However, variability among rice genotypes leads to remarkable differences in the degree of Al tolerance for distinct cultivars. A number of studies have demonstrated that rice plants achieve Al tolerance through an unknown mechanism that is independent of root tip Al exclusion. We have analysed expression changes of the rice ASR gene family as a function of Al treatment. The gene ASR5 was differentially regulated in the Al-tolerant rice ssp. Japonica cv. Nipponbare. However, ASR5 expression did not respond to Al exposure in Indica cv. Taim rice roots, which are highly Al sensitive. Transgenic plants carrying RNAi constructs that targeted the ASR genes were obtained, and increased Al susceptibility was observed in T1 plants. Embryogenic calli of transgenic rice carrying an ASR5-green fluorescent protein fusion revealed that ASR5 was localized in both the nucleus and cytoplasm. Using a proteomic approach to compare non-transformed and ASR-RNAi plants, a total of 41 proteins with contrasting expression patterns were identified. We suggest that the ASR5 protein acts as a transcription factor to regulate the expression of different genes that collectively protect rice cells from Al-induced stress responses.
Plant Science | 2014
Andréia Caverzan; Aurenivia Bonifacio; Fabricio E. L. Carvalho; Cláudia M. B. Andrade; Gisele Passaia; Mariana Schünemann; Felipe dos Santos Maraschin; Marcio O. Martins; Felipe K. Teixeira; Rafael Rauber; Rogério Margis; Joaquim Albenisio Gomes Silveira; Marcia Margis-Pinheiro
The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance.
Liver International | 2007
Eduardo Linck Machado Guimarães; Mariana Ferreira da Silva Franceschi; Cláudia M. B. Andrade; Regina Maria Vieira da Costa Guaragna; Radovan Borojevic; Rogério Margis; Elena Aida Bernard; Fátima Theresinha Costa Rodrigues Guma
Background/Aims: Pre‐adipocyte differentiation into adipocyte is a terminal differentiation process triggered by a cascade of transcription factors. Conversely, hepatic stellate cells (HSC) can switch between lipid storing and the myofibroblast phenotype in association with liver fibrotic processes. Here, adipogenic/lipogenic‐related transcription factors and downstream‐regulated genes were evaluated in a murine HSC cell line. GRX‐HSC cells are transitional myofibroblasts that differentiate into lipocytes following retinol or indomethacin treatment.
Toxicology and Applied Pharmacology | 2012
Luana Heimfarth; Samanta Oliveira Loureiro; Márcio Ferreira Dutra; Cláudia M. B. Andrade; Letícia Ferreira Pettenuzzo; Fátima Theresinha Costa Rodrigues Guma; Carlos Alberto Saraiva Goncalves; João Batista Teixeira da Rocha; Regina Pessoa-Pureur
In the present report 15day-old Wistar rats were injected with 0.3μmol of diphenyl ditelluride (PhTe)(2)/kg body weight and parameters of neurodegeneration were analyzed in slices from striatum 6days afterwards. We found hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein-GFAP and vimentin) and from neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H, respectively) and increased MAPK (Erk, JNK and p38MAPK) as well as PKA activities. The treatment induced reactive astrogliosis in the striatum, evidenced by increased GFAP and vimentin immunocontent as well as their mRNA overexpression. Also, (PhTe)(2) significantly increased the propidium iodide (PI) positive cells in NeuN positive population without altering PI incorporation into GFAP positive cells, indicating that in vivo exposure to (PhTe)(2) provoked neuronal damage. Immunohistochemistry showed a dramatic increase of GFAP staining characteristic of reactive astrogliosis. Moreover, increased caspase 3 in (PhTe)(2) treated striatal slices suggested apoptotic cell death. (PhTe)(2) exposure decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was unaltered, suggesting that this kinase is not directly implicated in the neurotoxicity of this compound. Therefore, the present results shed light into the mechanisms of (PhTe)(2)-induced neurodegeneration in rat striatum, evidencing a critical role for the MAPK and Akt signaling pathways and disruption of cytoskeletal homeostasis, which could be related with apoptotic neuronal death and astrogliosis.
Toxicology in Vitro | 2011
Samanta Oliveira Loureiro; Luana Heimfarth; Karina Pires Reis; Luiza Wild; Cláudia M. B. Andrade; Fátima Theresinha Costa Rodrigues Guma; Carlos Alberto Saraiva Goncalves; Regina Pessoa-Pureur
Central nervous system dysfunctions are among the most significant effects of exposure to ethanol and the glial cells that play an important role in maintaining neuronal function, are extremely involved with these effects. The actin cytoskeleton plays a crucial role in a wide variety of cellular functions, especially when there is some injury. Therefore the aim of the present study was to analyze the short-term effects of ethanol (50, 100 and 200 mM) on the cytoskeleton of C6 glioma cells. Here we report that acute ethanol exposure profoundly disrupts the actin cytoskeleton in C6 cells decreasing stress fiber formation and downregulating RhoA and vinculin immunocontent. In contrast, microtubule and GFAP networks were not altered. We further demonstrate that anti-oxidants prevent ethanol-induced actin alterations, suggesting that the actions of ethanol on the actin cytoskeleton are related with generation of reactive oxygen species (ROS) in these cells. Our results show that ethanol at concentrations described to be toxic to the central nervous system was able to target the cytoskeleton of C6 cells and this effect could be related with increased ROS generation. Therefore, we propose that the dynamic restructuring of the cytoskeleton of glial cells might contribute to the response to the injury provoked by binge-like ethanol exposure in brain.
Journal of Cellular Biochemistry | 2003
Cláudia M. B. Andrade; Vera Maria Treis Trindade; Carla Cristina Araújo Cardoso; Ana Luiza Ziulkoski; Luiz C. Trugo; Regina Maria Vieira da Costa Guaragna; Radovan Borojevic; Fátima Theresinha Costa Rodrigues Guma
Sphingolipids play a relevant role in cell–cell interaction, communication, and migration. We studied the sphingolipid content in the murine hepatic stellate cell line GRX, which expresses the myofibroblast phenotype, and can be induced in vitro to display the fat‐storing phenotype. Lipid modifications along this induction were investigated by labeling sphingolipids with [14C]galactose, [14C]serine, or [14C]choline, and determination of fatty acid composition of sphingomyelin. The total ganglioside content and the GM2 synthase activity were lower in myofibroblasts. Both phenotypes presented similar gangliosides of the a‐pathway: GM2, GM1, and GD1a as well as their precursor GM3. Sphingomyelin and all the gangliosides were expressed as doublets; the upper/lower band ratio increased in lipocytes, containing more long‐chain fatty acids in retinol‐induced lipocytes as compared to the insulin/indomethacin induced ones. Time‐course experiments indicated a transfer of metabolic precursors from phosphatidylcholine to sphingomyelin in the two phenotypes. Taken together, these results indicate that myofibroblast and lipocytes can use distinct ceramide pools for sphingolipid synthesis. Differential ganglioside expression and presence of the long‐chain saturated fatty acids suggested that they may participate in formation of distinct membrane microdomains or rafts with specific functions on the two phenotypes of GRX‐cells.
Biochemical Journal | 2006
Ana Luiza Ziulkoski; Cláudia M. B. Andrade; Pilar M. Crespo; Elisa Sisti; Vera Maria Treis Trindade; Jose L. Daniotti; Fátima Theresinha Costa Rodrigues Guma; Radovan Borojevic
In previous studies, we have shown that the myelopoiesis dependent upon myelosupportive stroma required production of growth factors and heparan-sulphate proteoglycans, as well as generation of a negatively charged sialidase-sensitive intercellular environment between the stroma and the myeloid progenitors. In the present study, we have investigated the production, distribution and role of gangliosides in an experimental model of in vitro myelopoiesis dependent upon AFT-024 murine liver-derived stroma. We used the FDC-P1 cell line, which is dependent upon GM-CSF (granulocyte/macrophage colony-stimulating factor) for both survival and proliferation, as a reporter system to monitor bioavailability and local activity of GM-CSF. G(M3) was the major ganglioside produced by stroma, but not by myeloid cells, and it was required for optimal stroma myelosupportive function. It was released into the supernatant and selectively incorporated into the myeloid progenitor cells, where it segregated into rafts in which it co-localized with the GM-CSF-receptor alpha chain. This ganglioside was also metabolized further by myeloid cells into gangliosides of the a and b series, similar to endogenous G(M3). In these cells, G(M1) was the major ganglioside and it was segregated at the interface by stroma and myeloid cells, partially co-localizing with the GM-CSF-receptor alpha chain. We conclude that myelosupportive stroma cells produce and secrete the required growth factors, the cofactors such as heparan sulphate proteoglycans, and also supply gangliosides that are transferred from stroma to target cells, generating on the latter ones specific membrane domains with molecular complexes that include growth factor receptors.
Plant Biology | 2012
Carolina Werner Ribeiro; Fabricio E. L. Carvalho; Silvia Barcelos Rosa; Marcio Alves-Ferreira; Cláudia M. B. Andrade; Marcelo Ribeiro-Alves; Joaquim Albenisio Gomes Silveira; Rogério Margis; Marcia Margis-Pinheiro
As a central component of the hydrogen peroxide detoxifying system in plant cells, ascorbate peroxidases (APX) play an essential role in the control of intracellular reactive oxygen species (ROS) levels. To characterise the function of cytosolic APX isoforms (OsAPX1 and OsAPX2) in the mechanisms of plant defence, OsAPX1/2 knockdown rice plants were previously obtained. OsAPX1/2 knockdown plants (APx1/2s) exhibited a normal phenotype and development, even though they showed a global reduction of APX activity and increased hydrogen peroxide accumulation. To understand how rice plants compensate for the deficiency of cytosolic APX, expression and proteomic analyses were performed to characterise the global expression pattern of the APx1/2s mutant line compared with non-transformed plants. Our results strongly suggest that deficiencies in cytosolic APX isoforms markedly alter expression of genes associated with several key metabolic pathways, especially of genes involved in photosynthesis and antioxidant defence. These metabolic changes are compensatory because central physiological processes such as photosynthesis and growth were similar to non-transformed rice plants. Our analyses showed modulation of groups of genes and proteins related to specific metabolic pathways. Among the differentially expressed genes, the largest number corresponded to those with catalytic activity. Genes related to oxidative stress, carbohydrate metabolism, photosynthesis and transcription factor-encoding genes were also modulated. These results represent an important step toward understanding of the role played by cytosolic APX isoforms and hydrogen peroxide in the regulation of metabolism by redox modulation in monocots.
Cell and Tissue Research | 2011
Cláudia M. B. Andrade; Patrícia Luciana da Costa Lopez; Bruno Tubino Noronha; Márcia R. Wink; Radovan Borojevic; Rogério Margis; Guido Lenz; Ana Maria Oliveira Battastini; Fátima Theresinha Costa Rodrigues Guma
Ecto-5′-nucleotidase (eNT/CD73, E.C.3.1.3.5) is a glycosyl phosphatidylinositol (GPI)-linked cell-surface protein with several functions, including the local generation of adenosine from AMP, with the consequent activation of adenosine receptors and the salvaging of extracellular nucleotides. It also apparently functions independently of this activity, e.g., in the mediation of cell-cell adhesion. Liver fibrosis can be considered as a dynamic and integrated cellular response to chronic liver injury and the activation of hepatic stellate cells (HSCs) plays a role in the fibrogenic process. eNT/CD73 and adenosine are reported to play an important role in hepatic fibrosis in murine models. Knockdown of eNT/CD73 leads to an increase in mRNA expression of tissue non-specific alkaline phosphatase (TNALP), another AMP-degrading enzyme and thus no alteration is seen in the total ecto-AMPase activity of the cell. eNT/CD73 knockdown also leads to changes in the expression of collagen I and a clear alteration of cell migration. We suggest that eNT/CD73 protein expression controls cell migration and collagen expression in a mechanism independent of changes in nucleotide metabolism.
Collaboration
Dive into the Cláudia M. B. Andrade's collaboration.
Fátima Theresinha Costa Rodrigues Guma
Universidade Federal do Rio Grande do Sul
View shared research outputs