Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cláudia Marlise Balbinotti Andrade is active.

Publication


Featured researches published by Cláudia Marlise Balbinotti Andrade.


Nutrition Research | 2013

A low-protein, high-carbohydrate diet increases de novo fatty acid synthesis from glycerol and glycerokinase content in the liver of growing rats

Andreza Lúcia Menezes; Mayara Peron Pereira; Samyra L. Buzelle; Maísa Pavani dos Santos; Suélem Aparecida de França; Amanda Martins Baviera; Cláudia Marlise Balbinotti Andrade; Maria Antonieta Rissato Garófalo; Isis C. Kettelhut; Valéria Ernestânia Chaves; Nair Honda Kawashita

We had previously shown that adipose tissue increased in rats fed a low-protein, high-carbohydrate (LPHC) diet (6% protein, 74% carbohydrate) without a simultaneous increase in the de novo fatty acids (FA) synthesis. In addition, impairment in insulin signaling in adipose tissues was observed in these rats. For this study, we hypothesized that the insulin signaling pathway is preserved in the livers from these rats, which contributes to an increase in liver lipogenesis and, consequently, an increase in the weight of the adipose tissue. We also hypothesized that glycerol from triacylglycerol is an important substrate for FA synthesis. Our results showed that administration of the LPHC diet induced an increase in the in vivo rate of total FA synthesis (150%) as well as FA synthesis from glucose (270%) in the liver. There were also increased rates of [U-¹⁴C]glycerol incorporation into glyceride-FA (15-fold), accompanied by increased glycerokinase content (30%) compared with livers of rats fed the control diet. The LPHC diet did not change the glycerol-3-phosphate generation from either glucose or glyceroneogenesis. There was an increase in the insulin sensitivity in liver from LPHC-fed rats, as evidenced by increases in IR(β) (35%) levels and serine/threonine protein kinase (AKT) levels (75%), and basal (95%) and insulin-stimulated AKT phosphorylation (105%) levels. The LPHC diet also induced an increase in the liver sterol regulatory element-binding protein-1c content (50%). In summary, these data confirmed the hypothesis that lipogenesis and insulin signaling are increased in the livers of LPHC-fed rats and that glycerol is important not only for FA esterification but also for FA synthesis.


Canadian Journal of Physiology and Pharmacology | 2014

Decreased rate of protein synthesis, caspase-3 activity, and ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, high-carbohydrate diet

Emanuele Batistela; Mayara Peron Pereira; Juliany Torres Siqueira; Silvia Paula-Gomes; Neusa Maria Zanon; Eduardo B. Oliveira; Luiz C. C. Navegantes; Isis C. Kettelhut; Cláudia Marlise Balbinotti Andrade; Nair Honda Kawashita; Amanda Martins Baviera

The aim of this study was to investigate the changes in the rates of both protein synthesis and breakdown, and the activation of intracellular effectors that control these processes in soleus muscles from growing rats fed a low-protein, high-carbohydrate (LPHC) diet for 15 days. The mass and the protein content, as well as the rate of protein synthesis, were decreased in the soleus from LPHC-fed rats. The availability of amino acids was diminished, since the levels of various essential amino acids were decreased in the plasma of LPHC-fed rats. Overall rate of proteolysis was also decreased, explained by reductions in the mRNA levels of atrogin-1 and MuRF-1, ubiquitin conjugates, proteasome activity, and in the activity of caspase-3. Soleus muscles from LPHC-fed rats showed increased insulin sensitivity, with increased levels of insulin receptor and phosphorylation levels of AKT, which probably explains the inhibition of both the caspase-3 activity and the ubiquitin-proteasome system. The fall of muscle proteolysis seems to represent an adaptive response that contributes to spare proteins in a condition of diminished availability of dietary amino acids. Furthermore, the decreased rate of protein synthesis may be the driving factor to the lower muscle mass gain in growing rats fed the LPHC diet.


Revista Brasileira De Farmacognosia-brazilian Journal of Pharmacognosy | 2013

Combretum lanceolatum flowers extract shows antidiabetic activity through activation of AMPK by quercetin

Carlos Roberto Porto Dechandt; Juliany Torres Siqueira; Damiana Luiza Pereira de Souza; Lais Cobianchi Junqueira Araujo; Virginia Claudia da Silva; Paulo Teixeira de Sousa Junior; Cláudia Marlise Balbinotti Andrade; Nair Honda Kawashita; Amanda Martins Baviera

The present study evaluated the antidiabetic activity of the Combretum lanceolatum Pohl ex Eichler, Combretaceae, flowers extract (ClEtOH) in diabetic rats. Streptozotocin-diabetic rats were divided into four groups: diabetic control, diabetic treated with 500 mg/kg of metformin and diabetic treated with 250 or 500 mg/kg of ClEtOH for 21 days. The treatment of diabetic rats with 500 mg/kg of ClEtOH promoted an increase in the weight of liver, white adipose tissues and skeletal muscles, improving body weight gain. Diabetic rats treated with 500 mg/kg of ClEtOH also presented reduction in glycemia, glycosuria and urinary urea levels, and increase in liver glycogen content. HPLC chromatogram showed that quercetin is the major compound in the extract. The phosphorylation levels of adenosine monophosphate-activated protein kinase were increased in liver slices incubated in vitro with 50 µg/mL of ClEtOH, similarly to the incubation with metformin (50 µg/mL) or quercetin (10 µg/mL). The antihyperglycemic effect of ClEtOH was similar to that of metformin and appears to be through inhibition of gluconeogenesis, since urinary urea was reduced and skeletal muscle mass was increased. These data indicate that the antidiabetic activity of the Combretum lanceolatum extract could be mediated, at least in part, through activation of adenosine monophosphateactivated protein kinase by quercetin.


Hormone Molecular Biology and Clinical Investigation | 2017

Exercise-induced effects on UCP1 expression in classical brown adipose tissue: a systematic review

Andreas D. Flouris; Petros C. Dinas; Angelica Valente; Cláudia Marlise Balbinotti Andrade; Nair Honda Kawashita; Paraskevi Sakellariou

Abstract Understanding the impact of regular exercise training on uncoupling protein 1 (UCP1) activity in classical brown adipose tissue (CBAT) is vital to our knowledge of whole-body thermogenic activity. The purpose of this systematic review was to evaluate the available experimental evidence on the effect of regular exercise training on UCP1 expression in CBAT. We performed a literature search using PubMed (1966–2016), Scopus, and EMBASE (1974–2016). Studies in any language that examined the effect of regular exercise training on UCP1 expression in CBAT, and not white adipose tissue (WAT), were eligible. Reviews, editorials, and conference proceedings were excluded. Nine studies fulfilled the set criteria. Risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. The quality of reporting the results in the included studies was assessed using the 38-item checklist of the Animal Research Reporting of In Vivo Experiments (ARRIVE). Based on the evidence available and a comprehensive analysis of different confounding factors, we conclude that regular exercise training does not represent a major stimulus of UCP1 expression in CBAT. However, regular exercise training may induce adaptive responses to CBAT thermogenic activity in cases where: (i) animals consume a high-fat diet, (ii) exercise is combined with cold exposure, and (iii) animals show endogenously low UCP1 levels. Finally, it is important to note an inconsistency in the results from the analysed studies, which may be attributed to a number of confounding factors, increased risk of bias, as well as low quality of reporting the results.


Medical Hypotheses | 2016

Chronic l-menthol-induced browning of white adipose tissue hypothesis: A putative therapeutic regime for combating obesity and improving metabolic health.

Paraskevi Sakellariou; Angelica Valente; Andres E. Carrillo; George S. Metsios; Liliya Nadolnik; Athanasios Z. Jamurtas; Yiannis Koutedakis; Cesar Luiz Boguszewski; Cláudia Marlise Balbinotti Andrade; Per-Arne Svensson; Nair Honda Kawashita; Andreas D. Flouris

INTRODUCTION Obesity constitutes a serious global health concern reaching pandemic prevalence rates. The existence of functional brown adipose tissue (BAT) in adult humans has provoked intense research interest in the role of this metabolically active tissue in whole-body energy balance and body weight regulation. A number of environmental, physiological, pathological, and pharmacological stimuli have been proposed to induce BAT-mediated thermogenesis and functional thermogenic BAT-like activity in white adipose tissue (WAT), opening new avenues for therapeutic strategies based on enhancing the number of beige adipocytes in WAT. HYPOTHESIS Recent evidence support a role of l-menthol cooling, mediated by TRPM8 receptor, on UCP1-dependent thermogenesis and BAT-like activity in classical WAT depots along with the recruitment of BAT at specific anatomical sites. l-Menthol-induced BAT thermogenesis has been suggested to occur by a β-adrenergic-independent mechanism, avoiding potential side-effects due to extensive β-adrenergic stimulation mediated by available beta receptor agonists. l-Menthol has been also linked to the activation of the cold-gated ion channel TRPA1. However, its role in l-menthol-induced UCP1-dependent thermogenic activity in BAT and WAT remains undetermined. White adipose tissue plasticity has important clinical implications for obesity prevention and/or treatment because higher levels of UCP1-dependent thermogenesis can lead to enhanced energy expenditure at a considerable extent. We hypothesize that chronic dietary l-menthol treatment could induce TRPM8- and TRPA1-dependent WAT adaptations, resembling BAT-like activity, and overall improve whole-body metabolic health in obese and overweight individuals. CONCLUSIONS The putative impact of chronic l-menthol dietary treatment on the stimulation of BAT-like activity in classical WAT depots in humans remains unknown. A detailed experimental design has been proposed to investigate the hypothesized l-menthol-induced browning of WAT. If our hypothesis was to be confirmed, TRPM8/TRPA1-induced metabolic adaptations of WAT to BAT-like activity could provide a promising novel therapeutic approach for increasing energy expenditure, regulating body weight, and preventing obesity and its related co-morbidities in humans.


Nutrition | 2014

Low-protein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats

Suélem Aparecida de França; Maísa Pavani dos Santos; Roger Vinícius Nunes Queiroz da Costa; Mendalli Froelich; Samyra Lopes Buzelle; Valéria Ernestânia Chaves; Morenna Alana Giordani; Mayara Peron Pereira; Edson Moleta Colodel; Cláudia Marlise Balbinotti Andrade; Nair Honda Kawashita

OBJECTIVE The aim of this study was to evaluate glucose uptake and the contribution of glucose to fatty acid (FA) synthesis and the glycerol-3-phosphate (G3P) of triacylglycerol synthesis by interscapular brown adipose tissue (IBAT) of low-protein, high-carbohydrate (LPHC) diet-fed rats. METHODS LPHC (6% protein; 74% carbohydrate) or control (17% protein; 63% carbohydrate) diets were administered to rats (∼ 100 g) for 15 d. Total FA and G3P synthesis and the synthesis of FA and G3P from glucose were evaluated in vivo by (3)H2O and (14)C-glucose. Sympathetic neural contribution for FA synthesis was evaluated by comparing the synthesis in denervated (7 d before) IBAT with that of the contralateral innervated side. The insulin signaling and β3 adrenergic receptor (β3-AR) contents, as well as others, were determined by Western blot (Students t test or analysis of variance; P ≤ 0.05). RESULTS Total FA synthesis in IBAT was 133% higher in the LPHC group and was reduced 85% and 70% by denervation for the LPHC and control groups, respectively. Glucose uptake was 3.5-fold higher in the IBAT of LPHC rats than in that of the control rats, and the contribution of glucose to the total FA synthesis increased by 12% in control rats compared with 18% in LPHC rats. The LPHC diet increased the G3P generation from glucose by 270% and the insulin receptor content and the p-AKT insulin stimulation in IBAT by 120% and reduced the β3-AR content by 50%. CONCLUSIONS The LPHC diet stimulated glucose uptake, both the total rates and the rates derived from glucose-dependent FA and G3P synthesis, by increasing the insulin sensitivity and the sympathetic flux, despite a reduction in the β3-AR content.


Journal of Nutritional Biochemistry | 2016

Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis

Maísa Pavani dos Santos; Emanuele Batistela; Mayara Peron Pereira; Silvia Paula-Gomes; Neusa Maria Zanon; Isis C. Kettelhut; Christina Karatzaferi; Cláudia Marlise Balbinotti Andrade; Suélem Aparecida de França; Amanda Martins Baviera; Nair Honda Kawashita

Compared with the extensor digitorum longus (EDL) muscle of control rats (C), the EDL muscle of rats fed a low-protein, high-carbohydrate diet (LPHC) showed a 36% reduction in mass. Muscle mass is determined by the balance between protein synthesis and proteolysis; thus, the aim of this work was to evaluate the components involved in these processes. Compared with the muscle from C rats, the EDL muscle from LPHC diet-fed rats showed a reduction (34%) in the in vitro basal protein synthesis and a 22% reduction in the in vitro basal proteolysis suggesting that the reduction in the mass can be associated with a change in the rate of the two processes. Soon after euthanasia, in the EDL muscles of the rats fed the LPHC diet for 15days, the activity of caspase-3 and that of components of the ubiquitin-proteasome system (atrogin-1 content and chymotrypsin-like activity) were decreased. The phosphorylation of p70(S6K) and 4E-BP1, proteins involved in protein synthesis, was also decreased. We observed an increase in the insulin-stimulated protein content of p-Akt. Thus, the higher insulin sensitivity in the EDL muscle of LPHC rats seemed to contribute to the lower proteolysis in LPHC rats. However, even with the higher insulin sensitivity, the reduction in p-E4-BP1 and p70(S6K) indicates a reduction in protein synthesis, showing that factors other than insulin can have a greater effect on the control of protein synthesis.


Journal of Ethnopharmacology | 2015

Hydroethanolic extract of the inner stem bark of Cedrela odorata has low toxicity and reduces hyperglycemia induced by an overload of sucrose and glucose

Morenna Alana Giordani; Thiago Carvalho Mamede Collicchio; Sérgio Donizeti Ascêncio; Domingos Tabajara de Oliveira Martins; Sikiru Olaitan Balogun; Isanete Geraldini Costa Bieski; Leilane Aparecida da Silva; Edson Moleta Colodel; Roberto Lopes de Souza; Damiana Luiza Pereira de Souza; Suélem Aparecida de França; Cláudia Marlise Balbinotti Andrade; Nair Honda Kawashita

ETHNOPHARMACOLOGICAL RELEVANCE Cedrela odorata L. (Meliaceae) is a native plant of the Amazon region and its inner stem bark is used in the treatment of diabetes in the form of maceration in Brazilian popular medicine. Until now, there is no scientific study on this activity. The present study was aimed at evaluating the anti-hyperglycemic activity, anti-diabetic, toxicity, antioxidant and potential mechanism of action of hydroethanolic extract of the inner stem bark of Cedrela odorata. MATERIAL AND METHODS The inner stem bark extract of Cedrela odorata was prepared by maceration in 70% ethanol for 7 days to obtain hydroethanolic extract of Cedrela odorata (HeECo). The preliminary phytochemical analysis was performed according to procedures described in the literature. Selected secondary metabolites detected were quantified by high performance liquid chromatography (HPLC). Acute toxicity of HeECo was investigated in male and female mice with oral administration of graded doses of HeECo from 10 to 5000 mg/kg. Subchronic oral toxicity study was done by oral administration of HeECo (500 mg/kg) and vehicle for 30 days to both sexes of Wistar rats. Clinical observations and toxicological related parameters were determined. Blood was collected for biochemical and hematological analyses, while histological examinations were performed on selected organs. Anti-hiperglycemic and antidiabetic effects were evaluated in streptozotocin-induced diabetic rats. In acute evaluation, the animals received pretreatment with 250 and 500 mg/kg of HeECo, before carbohydrate overload. For subchronic effect, the antidiabetic activity of HeECo was evaluated using the same doses for 21 days. At the end of the treatments, the levels of triacylglycerols, malondialdehyde, total antioxidant status, superoxide dismutase and glutathione peroxidase activities were evaluated in the plasma. RESULTS The extract showed low acute toxicity. HeECo exhibited inhibitory activity against α-glucosidase and caused a lowering in the peak levels of blood glucose in animals that received glucose overload by 36.7% and 24.1% in the area under the glucose curve (AUC). When the overload was sucrose, HeECo reduced the blood glucose level by 44.4% without affecting AUC. Treatment with HeECo of the blood glucose of the diabetic animals for 21 days did not lead to improvement in weight gain and regularization of the blood glucose level, but reduced the triacylglycerol and malondialdehyde levels by 36.6% and 48.1%, respectively. The activity of the antioxidant enzymes, superoxide dismutase and glutathione peroxidase were significantly increased when compared to diabetic control rats. HPLC analysis showed the presence of polyphenols, such as gallic acid, (-)- gallocatechin and (+)- catechin, the latter is present in higher quantity. CONCLUSIONS Collectively, these data showed that HeECo could blunt the postprandial glycemic surge in rats; possibly through inhibition of alpha-glucosidase and positive modulation of antioxidant enzymes. Our findings confirmed the anti-hiperglycemic activity of HeECo in STZ- diabetic rats. Cedrela odorata is effective in diminishing glucose levels in vitro and in vivo and in ameliorating oxidative damage that occurs in diabetes and/or due to hyperglycemia in rats. According to our results, the efficacy of Cedrela odorata preparation could be due to the presence of active principles with different mode of actions at the molecular level, including α-glycosidases and glucose transporter inhibitors and antioxidant property.


Chemico-Biological Interactions | 2018

The inhibition of heme oxigenase-1 (HO-1) abolishes the mitochondrial protection induced by sesamol in LPS-treated RAW 264.7 cells

Adriane Ribeiro Duarte; Aline Lukasievicz Chenet; Fhelipe Jolner Souza de Almeida; Cláudia Marlise Balbinotti Andrade; Marcos Roberto de Oliveira

Redox impairment and mitochondrial dysfunction have been seen in inflammation. Thus, there is interest in studies aiming to find molecules that would exert mitochondrial protection in mammalian tissues undergoing inflammation. Sesamol (SES) is an antioxidant and anti-inflammatory molecule as demonstrated in both in vitro and in vivo experimental models. Nonetheless, it was not previously demonstrated whether and how SES would cause mitochondrial protection during inflammation. Thus, we investigated here whether a pretreatment (for 1 h) with SES (1-100 μM) would prevent mitochondrial impairment in lipopolysaccharide (LPS)-treated RAW 264.7 cells. It was also evaluated whether the heme oxigenase-1 (HO-1) would be involved in the effects on mitochondria induced by SES. We found that SES reduced the levels of lipid peroxidation and protein nitration in the membranes of mitochondria obtained from LPS-treated RAW 264.7 cells. SES also attenuated the production of superoxide anion radical (O2-•) and nitric oxide (NO•) in this experimental model. SES suppressed the LPS-elicited mitochondrial dysfunction, as assessed through the analyses of the activities of the mitochondrial complexes I and V. SES also abrogated the LPS-induced decrease in the levels of adenosine triphosphate (ATP) and in the mitochondrial membrane potential (MMP). SES induced mitochondria-related anti-apoptotic effects in LPS-treated cells. Besides, SES pretreatment abrogated the LPS-triggered inflammation by decreasing the levels of pro-inflammatory proteins. The SES-induced mitochondria-associated protection was blocked by the specific inhibitor of HO-1, ZnPP IX (20 μM). Therefore, SES induced mitochondrial protection in LPS-treated cells by a mechanism involving HO-1.


Pharmaceutical Biology | 2016

Combretum lanceolatum flowers ethanol extract inhibits hepatic gluconeogenesis: an in vivo mechanism study

Juliany Torres Siqueira; Emanuele Batistela; Mayara Peron Pereira; da Silva Vc; de Sousa Pt; Cláudia Marlise Balbinotti Andrade; Nair Honda Kawashita; Bertolini Gl; Amanda Martins Baviera

Abstract Context Ethnopharmacological studies have demonstrated that plants of the Combretum genus presented antidiabetic activity, including Combretum lanceolatum Pohl ex Eichler (Combretaceae). Objective This study investigated the hepatic mechanisms of action of C. lanceolatum flowers ethanol extract (ClEtOH) related to its antihyperglycaemic effect in streptozotocin-diabetic rats. Materials and methods Male Wistar rats were divided into normal (N) and diabetic control (DC) rats treated with vehicle (water); diabetic rats treated with 500 mg/kg metformin (DMet) or 500 mg/kg ClEtOH (DT500). After 21 d of treatment, hepatic glucose and urea production were investigated through in situ perfused liver with l-glutamine. Changes in the phosphoenolpyruvate carboxykinase (PEPCK) levels and in the activation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-signalling intermediates were also investigated. Results Similar to DMet, DT500 rats showed a reduction in the rates of hepatic production of glucose (46%) and urea (22%) in comparison with DC. This reduction was accompanied by a reduction in the PEPCK levels in liver of DT500 (28%) and DMet (43%) when compared with DC. AMPK phosphorylation levels were higher in the liver of DT500 (17%) and DMet (16%) rats. The basal AKT phosphorylation levels were increased in liver of DT500 rats, without differences in the insulin-stimulated AKT phosphorylation and in the insulin receptor levels between DC and DT500 rats. Discussion and conclusion The antidiabetic activity of ClEtOH can be attributed, at least in part, to inhibition of hepatic gluconeogenesis, probably due to the activation of both AMPK and AKT effectors and reduction in the PEPCK levels.

Collaboration


Dive into the Cláudia Marlise Balbinotti Andrade's collaboration.

Top Co-Authors

Avatar

Nair Honda Kawashita

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Mayara Peron Pereira

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Suélem Aparecida de França

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Maísa Pavani dos Santos

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juliany Torres Siqueira

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Marcos Roberto de Oliveira

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Damiana Luiza Pereira de Souza

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Edson Moleta Colodel

Universidade Federal de Mato Grosso

View shared research outputs
Top Co-Authors

Avatar

Emanuele Batistela

Universidade Federal de Mato Grosso

View shared research outputs
Researchain Logo
Decentralizing Knowledge