Claudia Millán
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Millán.
Nature Methods | 2013
Massimo Sammito; Claudia Millán; Dayté D Rodríguez; Iñaki M. de Ilarduya; Kathrin Meindl; Ivan De Marino; Giovanna Petrillo; Rubén M. Buey; José M. de Pereda; Kornelius Zeth; George M. Sheldrick; Isabel Usón
We describe an algorithm for phasing protein crystal X-ray diffraction data that identifies, retrieves, refines and exploits general tertiary structural information from small fragments available in the Protein Data Bank. The algorithm successfully phased, through unspecific molecular replacement combined with density modification, all-helical, mixed alpha-beta, and all-beta protein structures. The method is available as a software implementation: Borges.
Scientific Reports | 2015
Theodoros Goulas; Danuta Mizgalska; Irene Garcia-Ferrer; Tomasz Kantyka; Tibisay Guevara; Borys Szmigielski; Aneta Sroka; Claudia Millán; Isabel Usón; Florian Veillard; Barbara Potempa; Piotr Mydel; Maria Solà; Jan Potempa; F. Xavier Gomis-Rüth
Citrullination is a post-translational modification of higher organisms that deiminates arginines in proteins and peptides. It occurs in physiological processes but also pathologies such as multiple sclerosis, fibrosis, Alzheimer’s disease and rheumatoid arthritis (RA). The reaction is catalyzed by peptidylarginine deiminases (PADs), which are found in vertebrates but not in lower organisms. RA has been epidemiologically associated with periodontal disease, whose main infective agent is Porphyromonas gingivalis. Uniquely among microbes, P. gingivalis secretes a PAD, termed PPAD (Porphyromonas peptidylarginine deiminase), which is genetically unrelated to eukaryotic PADs. Here, we studied function of PPAD and its substrate-free, substrate-complex, and substrate-mimic-complex structures. It comprises a flat cylindrical catalytic domain with five-fold α/β-propeller architecture and a C-terminal immunoglobulin-like domain. The PPAD active site is a funnel located on one of the cylinder bases. It accommodates arginines from peptide substrates after major rearrangement of a “Michaelis loop” that closes the cleft. The guanidinium and carboxylate groups of substrates are tightly bound, which explains activity of PPAD against arginines at C-termini but not within peptides. Catalysis is based on a cysteine-histidine-asparagine triad, which is shared with human PAD1-PAD4 and other guanidino-group modifying enzymes. We provide a working mechanism hypothesis based on 18 structure-derived point mutants.
IUCrJ | 2015
Claudia Millán; Massimo Sammito; Isabel Usón
ARCIMBOLDO replaces the atomicity constraints required for ab initio phasing by enforcement of model stereochemistry. Small model fragments and local folds are exploited at resolutions up to 2 Å in different contexts, from supercomputers to the standalone ARCIMBOLDO_LITE, which solves straightforward cases on a single multicore machine.
FEBS Journal | 2014
Massimo Sammito; Kathrin Meindl; Iñaki M. de Ilarduya; Claudia Millán; Cecilia Artola-Recolons; Juan A. Hermoso; Isabel Usón
Molecular replacement, one of the general methods used to solve the crystallographic phase problem, relies on the availability of suitable models for placement in the unit cell of the unknown structure in order to provide initial phases. ARCIMBOLDO, originally conceived for ab initio phasing, operates at the limit of this approach, using small, very accurate fragments such as polyalanine α‐helices. A distant homolog may contain accurate building blocks, but it may not be evident which sub‐structure is the most suitable purely from the degree of conservation. Trying out all alternative possibilities in a systematic way is computationally expensive, even if effective. In the present study, the solution of the previously unknown structure of MltE, an outer membrane‐anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli, is described. The asymmetric unit contains a dimer of this 194 amino acid protein. The closest available homolog was the catalytic domain of Slt70 (PDB code 1QTE). Originally, this template was used omitting contiguous spans of aminoacids and setting as many ARCIMBOLDO runs as models, each aiming to locate two copies sequentially with PHASER. Fragment trimming against the correlation coefficient prior to expansion through density modification and autotracing in SHELXE was essential. Analysis of the figures of merit led to the strategy to optimize the search model against the experimental data now implemented within ARCIMBOLDO‐SHREDDER (http://chango.ibmb.csic.es/SHREDDER). In this strategy, the initial template is systematically shredded, and fragments are scored against each unique solution of the rotation function. Results are combined into a score per residue and the template is trimmed accordingly.
Journal of Molecular Biology | 2014
Zaineb Fourati; Bijoyita Roy; Claudia Millán; Pierre Damien Coureux; Stephanie Kervestin; Herman van Tilbeurgh; Feng He; Isabel Usón; Allan Jacobson; Marc Graille
Upf1, Upf2, and Upf3 are the principal regulators of nonsense-mediated mRNA decay (NMD), a cytoplasmic surveillance pathway that accelerates the degradation of mRNAs undergoing premature translation termination. These three proteins interact with each other, the ribosome, the translation termination machinery, and multiple mRNA decay factors, but the precise mechanism allowing the selective detection and degradation of nonsense-containing transcripts remains elusive. Here, we have determined the crystal structure of the N-terminal mIF4G domain from Saccharomyces cerevisiae Upf2 and identified a highly conserved region in this domain that is essential for NMD and independent of Upf2s binding sites for Upf1 and Upf3. Mutations within this conserved region not only inactivate NMD but also disrupt Upf2 binding to specific proteins, including Dbp6, a DEAD-box helicase. Although current models indicate that Upf2 functions principally as an activator of Upf1 and a bridge between Upf1 and Upf3, our data suggest that it may also serve as a platform for the association of additional factors that play roles in premature translation termination and NMD.
Acta Crystallographica Section D-biological Crystallography | 2015
Claudia Millán; Massimo Sammito; Irene Garcia-Ferrer; Theodoros Goulas; George M. Sheldrick; Isabel Usón
ARCIMBOLDO allows ab initio phasing of macromolecular structures below atomic resolution by exploiting the location of small model fragments combined with density modification in a multisolution frame. The model fragments can be either secondary-structure elements predicted from the sequence or tertiary-structure fragments. The latter can be derived from libraries of typical local folds or from related structures, such as a low-homology model that is unsuccessful in molecular replacement. In all ARCIMBOLDO applications, fragments are searched for sequentially. Correct partial solutions obtained after each fragment-search stage but lacking the necessary phasing power can, if combined, succeed. Here, an analysis is presented of the clustering of partial solutions in reciprocal space and of its application to a set of different cases. In practice, the task of combining model fragments from an ARCIMBOLDO run requires their referral to a common origin and is complicated by the presence of correct and incorrect solutions as well as by their not being independent. The F-weighted mean phase difference has been used as a figure of merit. Clustering perfect, non-overlapping fragments dismembered from test structures in polar and nonpolar space groups shows that density modification before determining the relative origin shift enhances its discrimination. In the case of nonpolar space groups, clustering of ARCIMBOLDO solutions from secondary-structure models is feasible. The use of partially overlapping search fragments provides a more favourable circumstance and was assessed on a test case. Applying the devised strategy, a previously unknown structure was solved from clustered correct partial solutions.
IUCrJ | 2015
Guillaume A. Schoch; Massimo Sammito; Claudia Millán; Isabel Usón; Markus G. Rudolph
A peptide fortuitously crystallized to form a motif exhibiting 13-fold non-crystallographic symmetry as judged by self-rotation function analysis. Molecular-replacement phasing used a small α-helix as the search model and was only successful with the recently deployed ARCIMBOLDO_LITE.
Acta Crystallographica Section D-biological Crystallography | 2018
Claudia Millán; Sammito; Airlie J. McCoy; A.F.Z. Nascimento; Giovanna Petrillo; Robert D. Oeffner; Teresa Domínguez-Gil; Juan A. Hermoso; Randy J. Read; Isabel Usón
ARCIMBOLDO_SHREDDER solves structures using fragments from low-homology models. Search fragments are improved through refinement or trimming against the experimental data. Consistent solutions are combined.
Acta Crystallographica Section D Structural Biology | 2018
Airlie J. McCoy; Robert D. Oeffner; Claudia Millán; Massimo Sammito; Isabel Usón; Randy J. Read
Maximum-likelihood rigid-body refinement can be carried out to improve oriented models before the translation-function step of molecular replacement.
Archive | 2013
Isabel Usón; Claudia Millán; Massimo Sammito; Kathrin Meindl; Iñaki M. de Ilarduya; Ivan De Marino; Dayté D Rodríguez
The International School of Crystallography held a course at the Ettore Majorana Centre in Erice in 1997 on “Direct methods for solving macromolecular structures”. In those days, Dual Space recycling methods, introduced by Hauptman and Weeks had allowed the breakthrough of extending atomic resolution phasing to macromolecules. The largest previously unknown macromolecule to have been phased by such methods was hirustasin at 1.2 A resolution, with 400 independent atoms. At the time of the meeting, triclinic lysozyme at 1.0 A, with 1,001 equal atoms was solved with SHELXD. Fifteen years later, ab Initio phasing has pushed the size and resolution limits of the problems it can tackle. Macromolecules with several thousands of atoms in the asymmetric unit can be solved from medium resolution data. One of the successful approaches is the combination of fragment location with the program PHASER and density modification with the program SHELXE in a supercomputing frame. The method is implemented in the program ARCIMBOLDO, described in this chapter.