Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia R. Farb is active.

Publication


Featured researches published by Claudia R. Farb.


The Journal of Comparative Neurology | 1996

INTRINSIC CONNECTIONS OF THE RAT AMYGDALOID COMPLEX : PROJECTIONS ORIGINATING IN THE ACCESSORY BASAL NUCLEUS

Asla Pitkänen; Lisa Stefanacci; Claudia R. Farb; G.‐Genevieve Go; Joseph E. LeDoux; David G. Amaral

The amygdaloid complex plays an important role in the detection of emotional stimuli, the generation of emotional responses, the formation of emotional memories, and perhaps other complex associational processes. These functions depend upon the flow of information through intricate and poorly understood circuitries within the amygdala. As part of an ongoing project aimed at further elucidating these circuits, we examined the intra‐amygdaloid connections of the acessory basal nucleus in the rat. In addition, we examined connections of the anterior cortical nucleus and amygdalahippocampal area to determine whether portions of these nuclei should be included in the accessory basal nucleus (as some earlier studies suggest). Phaseolus vulgaris leucoagglutinin was injected into different rostrocaudal levels of the accessory basal nucleus (n = 12) or into the anterior cortical nucleus (n = 3) or amygdalahippocampal area (n = 2). The major intra‐amygdaloid projections from the accessory basal nucleus were directed to the medial and capsular divisions of the central nucleus, the medial division of the amygdalohippocampal area, the medial division of the lateral nucleus, the central division of the medial nucleus, and the posterior cortical nucleus. The projections originating in the anterior cortical nucleus and the lateral division of the amygdalohippocampal area differed from those originating in the accessory basal nucleus, which suggests that these areas are not part of the deep amygdaloid nuclei have different intra‐amygdaloid connections. The pattern of these various connections suggests that information entering the amygdala from different sources can be integrated only in certain amygdaloid regions.


Neuroscience Letters | 1991

Overlapping projections to the amygdala and striatum from auditory processing areas of the thalamus and cortex

Joseph E. LeDoux; Claudia R. Farb; Lizabeth M. Romanski

The purpose of this study was to advance our understanding of the anatomical organization of sensory projections to the amygdala, and specifically to identify potential interactions within the amygdala between thalamic and cortical sensory projections of a single sensory modality. Thus, interconnections between the amygdala and acoustic processing areas of the thalamus and cortex were examined in the rat using WGA-HRP as an anterograde and a retrograde axonal tracer. Injections placed in medial aspects of the medial geniculate body (MGB) produced anterograde transport to the lateral nucleus of the amygdala and to adjacent areas of the striatum. Injections of primary auditory cortex (TE1) produced no transport to amygdala. In contrast, injections ventral to TE1 involving TE3 and perirhinal periallocortex (PRh) produced anterograde transport in the subcortical forebrain that was indistinguishable from that produced by the MGB injections. The TE3 and PRh injections also resulted in retrograde transport to primary auditory cortex and to MGB, thus confirming the involvement of these ventral cortical areas in auditory functions. Injections of the lateral nucleus of the amygdala resulted in retrograde transport back to the medial areas of MGB and to temporal cortical areas PRh, TE3, and the ventral most part of TE1. Thus, auditory processing regions of the thalamus and cortex give rise to overlapping (possibly convergent) projections to the lateral nucleus of the amygdala. These projections may allow diverse auditory signals to act on common ensembles of amygdaloid neurons and may therefore play a role in the integration of sensory messages leading to emotional reactions.


Neuroscience | 2005

Localization of glucocorticoid receptors at postsynaptic membranes in the lateral amygdala.

Luke R. Johnson; Claudia R. Farb; John H. Morrison; Bruce S. McEwen; Joseph E. LeDoux

Glucocorticoids, released in high concentrations from the adrenal cortex during stressful experiences, bind to glucocorticoid receptors in nuclear and peri-nuclear sites in neuronal somata. Their classically known mode of action is to induce gene promoter receptors to alter gene transcription. Nuclear glucocorticoid receptors are particularly dense in brain regions crucial for memory, including memory of stressful experiences, such as the hippocampus and amygdala. While it has been proposed that glucocorticoids may also act via membrane bound receptors, the existence of the latter remains controversial. Using electron microscopy, we found glucocorticoid receptors localized to non-genomic sites in rat lateral amygdala, glia processes, presynaptic terminals, neuronal dendrites, and dendritic spines including spine organelles and postsynaptic membrane densities. The lateral nucleus of the amygdala is a region specifically implicated in the formation of memories for stressful experiences. These newly observed glucocorticoid receptor immunoreactive sites were in addition to glucocorticoid receptor immunoreactive signals observed using electron and confocal microscopy in lateral amygdala principal neuron and GABA neuron soma and nuclei, cellular domains traditionally associated with glucocorticoid immunoreactivity. In lateral amygdala, glucocorticoid receptors are thus also localized to non-nuclear-membrane translocation sites, particularly dendritic spines, where they show an affinity for postsynaptic membrane densities, and may have a specialized role in modulating synaptic transmission plasticity related to fear and emotional memory.


The Journal of Neuroscience | 2004

Pavlovian Fear Conditioning Regulates Thr286 Autophosphorylation of Ca2+/Calmodulin-Dependent Protein Kinase II at Lateral Amygdala Synapses

Sarina M. Rodrigues; Claudia R. Farb; Elizabeth P. Bauer; Joseph E. LeDoux; Glenn E. Schafe

Ca2+/calmodulin-dependent protein kinase II (CaMKII) plays a critical role in synaptic plasticity and memory formation in a variety of learning systems and species. The present experiments examined the role of CaMKII in the circuitry underlying pavlovian fear conditioning. First, we reveal by immunocytochemical and tract-tracing methods that αCaMKII is postsynaptic to auditory thalamic inputs and colocalized with the NR2B subunit of the NMDA receptor. Furthermore, we show that fear conditioning results in an increase of the autophosphorylated (active) form of αCaMKII in lateral amygdala (LA) spines. Next, we demonstrate that intra-amygdala infusion of a CaMK inhibitor, 1-[NO-bis-1,5-isoquinolinesulfonyl]-N-methyl-l-tyrosyl-4-phenylpiperazine, KN-62, dose-dependently impairs the acquisition, but not the expression, of auditory and contextual fear conditioning. Finally, in electrophysiological experiments, we demonstrate that an NMDA receptor-dependent form of long-term potentiation at thalamic input synapses to the LA is impaired by bath application of KN-62 in vitro. Together, the results of these experiments provide the first comprehensive view of the role of CaMKII in the amygdala during fear conditioning.


Neuron | 2002

Fear Memory Formation Involves p190 RhoGAP and ROCK Proteins through a GRB2-Mediated Complex

Raphael Lamprecht; Claudia R. Farb; Joseph E. LeDoux

We used fear conditioning, which is known to alter synaptic efficacy in lateral amygdala (LA), to study molecular mechanisms underlying long-term memory. Following fear conditioning, the tyrosine phosphorylated protein p190 RhoGAP becomes associated with GRB2 in LA significantly more in conditioned than in control rats. RasGAP and Shc were also found to associate with GRB2 in LA significantly more in the conditioned animals. Inhibition of the p190 RhoGAP-downstream kinase ROCK in LA during fear conditioning impaired long- but not short-term memory. Thus, the p190 RhoGAP/ROCK pathway, which regulates the morphology of dendrites and axons during neural development, plays a central role, through a GRB2-mediated molecular complex, in fear memory formation in the lateral amygdala.


Nature Neuroscience | 2006

Fear conditioning drives profilin into amygdala dendritic spines

Raphael Lamprecht; Claudia R. Farb; Sarina M. Rodrigues; Joseph E. LeDoux

Changes in spine morphology may underlie memory formation, but the molecular mechanisms that subserve such alterations are poorly understood. Here we show that fear conditioning in rats leads to the movement of profilin, an actin polymerization–regulatory protein, into dendritic spines in the lateral amygdala and that these spines undergo enlargements in their postsynaptic densities (PSDs). A greater proportion of profilin-containing spines with enlarged PSDs could contribute to the enhancement of associatively induced synaptic responses in the lateral amygdala following fear learning.


European Journal of Neuroscience | 2005

Memory consolidation of Pavlovian fear conditioning requires nitric oxide signaling in the lateral amygdala

Glenn E. Schafe; Elizabeth P. Bauer; Svetlana Rosis; Claudia R. Farb; Sarina M. Rodrigues; Joseph E. LeDoux

Nitric oxide (NO) has been widely implicated in synaptic plasticity and memory formation. In studies of long‐term potentiation (LTP), NO is thought to serve as a ‘retrograde messenger’ that contributes to presynaptic aspects of LTP expression. In this study, we examined the role of NO signaling in Pavlovian fear conditioning. We first show that neuronal nitric oxide synthase is localized in the lateral nucleus of the amygdala (LA), a critical site of plasticity in fear conditioning. We next show that NO signaling is required for LTP at thalamic inputs to the LA and for the long‐term consolidation of auditory fear conditioning. Collectively, the findings suggest that NO signaling is an important component of memory formation of auditory fear conditioning, possibly as a retrograde signal that participates in presynaptic aspects of plasticity in the LA.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus

Robert M. Sears; Ann E. Fink; Mattis B. Wigestrand; Claudia R. Farb; Luis de Lecea; Joseph E. LeDoux

Significance The hypothalamic orexin (hypocretin) system controls survival-related processes such as food intake, arousal, and stress. Here we show that orexins also play an important role in learning about stimuli that predict harm. We demonstrate that blocking orexin activity in the noradrenergic locus coeruelus (LC) reduces, whereas increasing its activity enhances, threat learning in a Pavlovian auditory threat conditioning paradigm. Moreover, we demonstrate a direct functional connection between orexin enhancement of LC activity and amygdala-dependent memory processes. Strong, aversive memories can lead to fear and anxiety disorders that have a negative impact on individuals and their quality of life. The orexin system may represent a unique treatment target for these disorders. Survival in a dangerous environment requires learning about stimuli that predict harm. Although recent work has focused on the amygdala as the locus of aversive memory formation, the hypothalamus has long been implicated in emotional regulation, and the hypothalamic neuropeptide orexin (hypocretin) is involved in anxiety states and arousal. Nevertheless, little is known about the role of orexin in aversive memory formation. Using a combination of behavioral pharmacology, slice physiology, and optogenetic techniques, we show that orexin acts upstream of the amygdala via the noradrenergic locus coeruleus to enable threat (fear) learning, specifically during the aversive event. Our results are consistent with clinical studies linking orexin levels to aversive learning and anxiety in humans and dysregulation of the orexin system may contribute to the etiology of fear and anxiety disorders.


Experimental Brain Research | 1991

Ultrastructure and synaptic associations of auditory thalamo-amygdala projections in the rat

Joseph E. LeDoux; Claudia R. Farb; Teresa A. Milner

SummaryProjections from the acoustic thalamus to the lateral nucleus of the amygdala (AL) have been implicated in the formation of emotional memories. In order to begin elucidating the cellular basis of emotional learning in this pathway, the ultrastructure and synaptic associations of acoustic thalamus efferents terminating in AL were studied using wheat-germ agglutinated horse-radish peroxidase (WGA-HRP) and Phaseolus vulgaris Leucoagglutinin (Pha-L) as ultrastructural anterograde axonal markers. The tracers were injected into those areas of the thalamus (medial division of the medial geniculate body and posterior intralaminar nucleus, MGM/PIN) known both to project to AL and to receive afferents from the inferior colliculus. Terminals labeled with WGA-HRP or Pha-L in AL contained mitochrondria and many small, round clear vesicles and 0–3 large, dense-core vesicles. Most labeled terminals formed asymmetric synapses on unlabeled dendrites; of these the majority were on dendritic spines. These data demonstrate that projections from the acoustic thalamus form synapses in AL and provide the first characterization of the ultrastructure and synaptic associations of sensory afferent projections to the amygdala.


Brain Research | 1992

Glutamate immunoreactive terminals in the lateral amygdaloid nucleus: a possible substrate for emotional memory.

Claudia R. Farb; Chiye Aoki; Teresa A. Milner; Takeshi Kaneko; Joseph E. LeDoux

The ultrastructure and synaptic associations of terminals immunoreactive for L-glutamate (Glu) were examined in the lateral nucleus of the amygdala (AL). All results reported here involved tissue fixed only with paraformaldehyde. The specificity of the antiserum with paraformaldehyde fixation conditions was assessed and confirmed by immuno-dot blot analysis: the reactivity of anti-Glu to glutamic acid was at least 1,000 times greater than the reactivity to other amino acids. At the light microscopic level, Glu-immunoreactive punctate processes and somata were present in AL. At the electron microscopic level, many Glu-immunoreactive terminals were identified. Data analysis was performed on 365 of these labeled terminals. Glu-immunoreactive terminals were 0.3-1.5 microns in diameter and contained numerous small, clear vesicles as well as mitochondria. Many (77%) of the terminals analyzed had morphologically identifiable synaptic specializations. Most (90%) of the Glu-immunoreactive terminals with synaptic specializations formed asymmetric synapses on spines or small dendrites; synaptic specializations on soma or proximal dendrites were rarely seen (< 1%). Glu-immunoreactive terminals were qualitatively compared to terminals in AL labeled with two other antisera: anti-glutaminase, a marker for the enzyme that catalyzes the conversion of glutamine to the releasable or transmitter form of Glu, and anti-gamma-aminobutyric acid (anti-GABA), a marker for the major inhibitory amino acid transmitter in the brain. Terminals immunoreactive for glutaminase, like those immunoreactive for Glu, formed mostly asymmetric synaptic specializations on spines or small dendrites. In contrast, GABA-immunoreactive terminals usually formed symmetric synapses on soma or proximal dendrites and were never observed to form asymmetric axo-spinous contacts. Although Glu is a metabolic precursor to GABA, these data indicate that the majority of Glu-immunoreactive terminals reflect the site of synthesis and release of Glu and not of GABA. In addition, these results provide morphological evidence that Glu plays a role in excitatory neurotransmission at synapses in AL and support the growing body of data implicating excitatory amino acid-mediated synaptic plasticity in-emotional learning and memory processes in AL.

Collaboration


Dive into the Claudia R. Farb's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke R. Johnson

Uniformed Services University of the Health Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John H. Morrison

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiye Aoki

Center for Neural Science

View shared research outputs
Top Co-Authors

Avatar

David G. Amaral

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge