Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Rangel-Escareño is active.

Publication


Featured researches published by Claudia Rangel-Escareño.


Science | 2011

The Mutational Landscape of Head and Neck Squamous Cell Carcinoma

Nicolas Stransky; Ann Marie Egloff; Aaron D. Tward; Aleksandar D. Kostic; Kristian Cibulskis; Andrey Sivachenko; Gregory V. Kryukov; Michael S. Lawrence; Carrie Sougnez; Aaron McKenna; Erica Shefler; Alex H. Ramos; Petar Stojanov; Scott L. Carter; Douglas Voet; Maria L. Cortes; Daniel Auclair; Michael F. Berger; Gordon Saksena; Candace Guiducci; Robert C. Onofrio; Melissa Parkin; Marjorie Romkes; Joel L. Weissfeld; Raja R. Seethala; Lin Wang; Claudia Rangel-Escareño; Juan Carlos Fernández-López; Alfredo Hidalgo-Miranda; Jorge Melendez-Zajgla

The mutational profile of head and neck cancer is complex and may pose challenges to the development of targeted therapies. Head and neck squamous cell carcinoma (HNSCC) is a common, morbid, and frequently lethal malignancy. To uncover its mutational spectrum, we analyzed whole-exome sequencing data from 74 tumor-normal pairs. The majority exhibited a mutational profile consistent with tobacco exposure; human papillomavirus was detectable by sequencing DNA from infected tumors. In addition to identifying previously known HNSCC genes (TP53, CDKN2A, PTEN, PIK3CA, and HRAS), our analysis revealed many genes not previously implicated in this malignancy. At least 30% of cases harbored mutations in genes that regulate squamous differentiation (for example, NOTCH1, IRF6, and TP63), implicating its dysregulation as a major driver of HNSCC carcinogenesis. More generally, the results indicate the ability of large-scale sequencing to reveal fundamental tumorigenic mechanisms.


Nature | 2012

Sequence analysis of mutations and translocations across breast cancer subtypes

Shantanu Banerji; Kristian Cibulskis; Claudia Rangel-Escareño; Kristin K. Brown; Scott L. Carter; Abbie M. Frederick; Michael S. Lawrence; Andrey Sivachenko; Carrie Sougnez; Lihua Zou; Maria L. Cortes; Juan Carlos Fernández-López; Shouyong Peng; Kristin Ardlie; Daniel Auclair; Verónica Bautista-Piña; Fujiko Duke; Joshua M. Francis; Joonil Jung; Antonio Maffuz-Aziz; Robert C. Onofrio; Melissa Parkin; Nam H. Pho; Valeria Quintanar-Jurado; Alex H. Ramos; Rosa Rebollar-Vega; Sergio Rodriguez-Cuevas; Sandra Romero-Cordoba; Steven E. Schumacher; Nicolas Stransky

Breast carcinoma is the leading cause of cancer-related mortality in women worldwide, with an estimated 1.38 million new cases and 458,000 deaths in 2008 alone. This malignancy represents a heterogeneous group of tumours with characteristic molecular features, prognosis and responses to available therapy. Recurrent somatic alterations in breast cancer have been described, including mutations and copy number alterations, notably ERBB2 amplifications, the first successful therapy target defined by a genomic aberration. Previous DNA sequencing studies of breast cancer genomes have revealed additional candidate mutations and gene rearrangements. Here we report the whole-exome sequences of DNA from 103 human breast cancers of diverse subtypes from patients in Mexico and Vietnam compared to matched-normal DNA, together with whole-genome sequences of 22 breast cancer/normal pairs. Beyond confirming recurrent somatic mutations in PIK3CA, TP53, AKT1, GATA3 and MAP3K1, we discovered recurrent mutations in the CBFB transcription factor gene and deletions of its partner RUNX1. Furthermore, we have identified a recurrent MAGI3–AKT3 fusion enriched in triple-negative breast cancer lacking oestrogen and progesterone receptors and ERBB2 expression. The MAGI3–AKT3 fusion leads to constitutive activation of AKT kinase, which is abolished by treatment with an ATP-competitive AKT small-molecule inhibitor.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing

Jens Lohr; Petar Stojanov; Michael S. Lawrence; Daniel Auclair; Bjoern Chapuy; Carrie Sougnez; Peter Cruz-Gordillo; Birgit Knoechel; Yan W. Asmann; Susan L. Slager; Anne J. Novak; Ahmet Dogan; Stephen M. Ansell; Brian K. Link; Lihua Zou; Joshua Gould; Gordon Saksena; Nicolas Stransky; Claudia Rangel-Escareño; Juan Carlos Fernández-López; Alfredo Hidalgo-Miranda; Jorge Melendez-Zajgla; Enrique Hernández-Lemus; Angela Schwarz-Cruz y Celis; Ivan Imaz-Rosshandler; Akinyemi I. Ojesina; Joonil Jung; Chandra Sekhar Pedamallu; Eric S. Lander; Thomas M. Habermann

To gain insight into the genomic basis of diffuse large B-cell lymphoma (DLBCL), we performed massively parallel whole-exome sequencing of 55 primary tumor samples from patients with DLBCL and matched normal tissue. We identified recurrent mutations in genes that are well known to be functionally relevant in DLBCL, including MYD88, CARD11, EZH2, and CREBBP. We also identified somatic mutations in genes for which a functional role in DLBCL has not been previously suspected. These genes include MEF2B, MLL2, BTG1, GNA13, ACTB, P2RY8, PCLO, and TNFRSF14. Further, we show that BCL2 mutations commonly occur in patients with BCL2/IgH rearrangements as a result of somatic hypermutation normally occurring at the IgH locus. The BCL2 point mutations are primarily synonymous, and likely caused by activation-induced cytidine deaminase–mediated somatic hypermutation, as shown by comprehensive analysis of enrichment of mutations in WRCY target motifs. Those nonsynonymous mutations that are observed tend to be found outside of the functionally important BH domains of the protein, suggesting that strong negative selection against BCL2 loss-of-function mutations is at play. Last, by using an algorithm designed to identify likely functionally relevant but infrequent mutations, we identify KRAS, BRAF, and NOTCH1 as likely drivers of DLBCL pathogenesis in some patients. Our data provide an unbiased view of the landscape of mutations in DLBCL, and this in turn may point toward new therapeutic strategies for the disease.


PLOS ONE | 2014

Exploring the Distribution of Genetic Markers of Pharmacogenomics Relevance in Brazilian and Mexican Populations

Vania Bonifaz-Peña; Alejandra V. Contreras; Claudio J. Struchiner; Rosimeire Aparecida Roela; Tatiane K. Furuya-Mazzotti; Roger Chammas; Claudia Rangel-Escareño; Laura Uribe-Figueroa; María José Gómez-Vázquez; Howard L. McLeod; Alfredo Hidalgo-Miranda; Esteban J. Parra; Juan Carlos Fernández-López; Guilherme Suarez-Kurtz

Studies of pharmacogenomics-related traits are increasingly being performed to identify loci that affect either drug response or susceptibility to adverse drug reactions. However, the effect of the polymorphisms can differ in magnitude or be absent depending on the population being assessed. We used the Affymetrix Drug Metabolizing Enzymes and Transporters (DMET) Plus array to characterize the distribution of polymorphisms of pharmacogenetics and pharmacogenomics (PGx) relevance in two samples from the most populous Latin American countries, Brazil and Mexico. The sample from Brazil included 268 individuals from the southeastern state of Rio de Janeiro, and was stratified into census categories. The sample from Mexico comprised 45 Native American Zapotecas and 224 self-identified Mestizo individuals from 5 states located in geographically distant regions in Mexico. We evaluated the admixture proportions in the Brazilian and Mexican samples using a panel of Ancestry Informative Markers extracted from the DMET array, which was validated with genome-wide data. A substantial variation in ancestral proportions across census categories in Brazil, and geographic regions in Mexico was identified. We evaluated the extent of genetic differentiation (measured as FST values) of the genetic markers of the DMET Plus array between the relevant parental populations. Although the average levels of genetic differentiation are low, there is a long tail of markers showing large frequency differences, including markers located in genes belonging to the Cytochrome P450, Solute Carrier (SLC) and UDP-glucuronyltransferase (UGT) families as well as other genes of PGx relevance such as ABCC8, ADH1A, CHST3, PON1, PPARD, PPARG, and VKORC1. We show how differences in admixture history may have an important impact in the distribution of allele and genotype frequencies at the population level.


PLOS ONE | 2016

Cigarette Smoke Enhances the Expression of Profibrotic Molecules in Alveolar Epithelial Cells

Marco Checa; James S. Hagood; Rafael Velázquez-Cruz; Victor Ruiz; Carolina García-de-Alba; Claudia Rangel-Escareño; Francisco Urrea; Carina Becerril; Martha Montaño; Semiramis García-Trejo; José Cisneros Lira; Arnoldo Aquino-Galvez; Annie Pardo; Moisés Selman

Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease of unknown etiology. A growing body of evidence indicates that it may result from an aberrant activation of alveolar epithelium, which induces the expansion of the fibroblast population, their differentiation to myofibroblasts and the excessive accumulation of extracellular matrix. The mechanisms that activate the alveolar epithelium are unknown, but several studies indicate that smoking is the main environmental risk factor for the development of IPF. In this study we explored the effect of cigarette smoke on the gene expression profile and signaling pathways in alveolar epithelial cells. Lung epithelial cell line from human (A549), was exposed to cigarette smoke extract (CSE) for 1, 3, and 5 weeks at 1, 5 and 10% and gene expression was evaluated by complete transcriptome microarrays. Signaling networks were analyzed with the Ingenuity Pathway Analysis software. At 5 weeks of exposure, alveolar epithelial cells acquired a fibroblast-like phenotype. At this time, gene expression profile revealed a significant increase of more than 1000 genes and deregulation of canonical signaling pathways such as TGF-β and Wnt. Several profibrotic genes involved in EMT were over-expressed, and incomplete EMT was observed in these cells, and corroborated in mouse (MLE-12) and rat (RLE-6TN) epithelial cells. The secretion of activated TGF-β1 increased in cells exposed to cigarette smoke, which decreased when the integrin alpha v gene was silenced. These findings suggest that the exposure of alveolar epithelial cells to CSE induces the expression and release of a variety of profibrotic genes, and the activation of TGF-β1, which may explain at least partially, the increased risk of developing IPF in smokers.


Clinical & Developmental Immunology | 2013

Cysticerci Drive Dendritic Cells to Promote In Vitro and In Vivo Tregs Differentiation

Laura Adalid-Peralta; Asiel Arce-Sillas; Gladis Fragoso; Graciela Cárdenas; Marcos Rosetti; Didier Casanova-Hernández; Claudia Rangel-Escareño; Laura Uribe-Figueroa; Agnès Fleury; Edda Sciutto

Regulatory T cells (Tregs) play a crucial role in immune homeostasis. Treg induction is a strategy that parasites have evolved to modulate the hosts inflammatory environment, facilitating their establishment and permanence. In human Taenia solium neurocysticercosis (NC), the concurrence of increased peripheral and central Treg levels and their capacity to inhibit T cell activation and proliferation support their role in controlling neuroinflammation. This study is aimed at identifing possible mechanisms of Treg induction in human NC. Monocyte-derived dendritic cells (DC) from healthy human donors, cocultivated with autologous CD4+ naïve cells either in the presence or absence of cysticerci, promoted CD25highFoxp3+ Treg differentiation. An increased Treg induction was observed when cysticerci were present. Moreover, an augmentation of suppressive-related molecules (SLAMF1, B7-H1, and CD205) was found in parasite-induced DC differentiation. Increased Tregs and a higher in vivo DC expression of the regulatory molecules SLAMF1 and CD205 in NC patients were also found. SLAMF1 gene was downregulated in NC patients with extraparenchymal cysticerci, exhibiting higher inflammation levels than patients with parenchymal parasites. Our findings suggest that cysticerci may modulate DC to favor a suppressive environment, which may help parasite establishment, minimizing the excessive inflammation, which may lead to tissue damage.


PLOS ONE | 2017

A computational toxicogenomics approach identifies a list of highly hepatotoxic compounds from a large microarray database

Héctor A. Rueda-Zárate; Ivan Imaz-Rosshandler; Roberto A. Cárdenas-Ovando; Juan E. Castillo-Fernández; Julieta Noguez-Monroy; Claudia Rangel-Escareño

The liver and the kidney are the most common targets of chemical toxicity, due to their major metabolic and excretory functions. However, since the liver is directly involved in biotransformation, compounds in many currently and normally used drugs could affect it adversely. Most chemical compounds are already labeled according to FDA-approved labels using DILI-concern scale. Drug Induced Liver Injury (DILI) scale refers to an adverse drug reaction. Many compounds do not exhibit hepatotoxicity at early stages of development, so it is important to detect anomalies at gene expression level that could predict adverse reactions in later stages. In this study, a large collection of microarray data is used to investigate gene expression changes associated with hepatotoxicity. Using TG-GATEs a large-scale toxicogenomics database, we present a computational strategy to classify compounds by toxicity levels in human and animal models through patterns of gene expression. We combined machine learning algorithms with time series analysis to identify genes capable of classifying compounds by FDA-approved labeling as DILI-concern toxic. The goal is to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. The study illustrates that expression profiling can be used to classify compounds according to different hepatotoxic levels; to label those that are currently labeled as undertemined; and to determine if at the molecular level, animal models are a good proxy to predict hepatotoxicity in humans.


BMC Medical Genetics | 2018

Altered DNA methylation in liver and adipose tissues derived from individuals with obesity and type 2 diabetes

Francisco Barajas-Olmos; Federico Centeno-Cruz; Carlos Zerrweck; Ivan Imaz-Rosshandler; Angélica Martínez-Hernández; Emilio J. Córdova; Claudia Rangel-Escareño; Faustino Gálvez; Armando Castillo; Hernán Maydón; Francisco Campos; Diana Gabriela Maldonado-Pintado; Lorena Orozco

BackgroundObesity is a well-recognized risk factor for insulin resistance and type 2 diabetes (T2D), although the precise mechanisms underlying the relationship remain unknown. In this study we identified alterations of DNA methylation influencing T2D pathogenesis, in subcutaneous and visceral adipose tissues, liver, and blood from individuals with obesity.MethodsThe study included individuals with obesity, with and without T2D. From these patients, we obtained samples of liver tissue (n = 16), visceral and subcutaneous adipose tissues (n = 30), and peripheral blood (n = 38). We analyzed DNA methylation using Illumina Infinium Human Methylation arrays, and gene expression profiles using HumanHT-12 Expression BeadChip Arrays.ResultsAnalysis of DNA methylation profiles revealed several loci with differential methylation between individuals with and without T2D, in all tissues. Aberrant DNA methylation was mainly found in the liver and visceral adipose tissue. Gene ontology analysis of genes with altered DNA methylation revealed enriched terms related to glucose metabolism, lipid metabolism, cell cycle regulation, and response to wounding. An inverse correlation between altered methylation and gene expression in the four tissues was found in a subset of genes, which were related to insulin resistance, adipogenesis, fat storage, and inflammation.ConclusionsOur present findings provide additional evidence that aberrant DNA methylation may be a relevant mechanism involved in T2D pathogenesis among individuals with obesity.


Human Pathology | 2017

Differential gene expression profiles according to the Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society histopathological classification in lung adenocarcinoma subtypes

Camilo Molina-Romero; Claudia Rangel-Escareño; Alette Ortega-Gómez; Gerardo J. Alanis-Funes; Alejandro Avilés-Salas; Federico Avila-Moreno; Gabriela Mercado; Andrés Felipe Cardona; Alfredo Hidalgo-Miranda; Oscar Arrieta

The current lung cancer classification from the Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society has considerably changed the pathologic diagnosis of lung invasive adenocarcinoma, identifying disease subtypes with substantial implications for medical practice, such as clinical, radiological, molecular, and prognostic differences. We analyzed the differences in the genetic expression of adenocarcinoma subtypes according to the new classification. Microarray gene expression analysis was performed on a cohort of 29 adenocarcinoma patients treated at the Instituto Nacional de Cancerología of Mexico from 2008 to 2011. All patients had an available biopsy sample and were classified into 4 different subtypes of adenocarcinoma (2015 World Health Organization classification). Lepidic-predominant adenocarcinoma was the only pattern that exhibited a marked gene expression difference compared with other predominant histologic patterns, revealing genes with significant expression (P < .01). Moreover, we identified 13 genes with specific differential expression in the lepidic-predominant adenocarcinoma that could be used as a gene signature. The lepidic-predominant histologic pattern has a differential gene expression profile compared with all predominant histologic patterns. Additionally, we identified a gene expression signature of 13 genes that have a unique behavior in the lepidic histologic pattern; these 13 genes are candidates for follow-up studies for their potential use as biomarkers or therapeutic targets. Results from this study highlight the importance of the new Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification and exemplify the potential clinical implications of correlating histopathology with exclusive molecular beacons.


PLOS ONE | 2015

CEMP1 Induces Transformation in Human Gingival Fibroblasts

Mercedes Bermúdez; Ivan Imaz-Rosshandler; Claudia Rangel-Escareño; Margarita Zeichner-David; Higinio Arzate; Gabriela Mercado-Célis

Cementum Protein 1 (CEMP1) is a key regulator of cementogenesis. CEMP1 promotes cell attachment, differentiation, deposition rate, composition, and morphology of hydroxyapatite crystals formed by human cementoblastic cells. Its expression is restricted to cementoblasts and progenitor cell subpopulations present in the periodontal ligament. CEMP1 transfection into non-osteogenic cells such as adult human gingival fibroblasts results in differentiation of these cells into a “mineralizing” cell phenotype. Other studies have shown evidence that CEMP1 could have a therapeutic potential for the treatment of bone defects and regeneration of other mineralized tissues. To better understand CEMP1’s biological effects in vitro we investigated the consequences of its expression in human gingival fibroblasts (HGF) growing in non-mineralizing media by comparing gene expression profiles. We identified several mRNAs whose expression is modified by CEMP1 induction in HGF cells. Enrichment analysis showed that several of these newly expressed genes are involved in oncogenesis. Our results suggest that CEMP1 causes the transformation of HGF and NIH3T3 cells. CEMP1 is overexpressed in cancer cell lines. We also determined that the region spanning the CEMP1 locus is commonly amplified in a variety of cancers, and finally we found significant overexpression of CEMP1 in leukemia, cervix, breast, prostate and lung cancer. Our findings suggest that CEMP1 exerts modulation of a number of cellular genes, cellular development, cellular growth, cell death, and cell cycle, and molecules associated with cancer.

Collaboration


Dive into the Claudia Rangel-Escareño's collaboration.

Top Co-Authors

Avatar

Ivan Imaz-Rosshandler

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Juan Carlos Fernández-López

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge