Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Rückert is active.

Publication


Featured researches published by Claudia Rückert.


Cell Reports | 2016

Zika Virus Infection in Mice Causes Panuveitis with Shedding of Virus in Tears.

Jonathan J. Miner; Abdoulaye Sene; Justin M. Richner; Amber M. Smith; Andrea Santeford; Norimitsu Ban; James Weger-Lucarelli; Francesca Manzella; Claudia Rückert; Jennifer Govero; Kevin K. Noguchi; Gregory D. Ebel; Michael S. Diamond; Rajendra S. Apte

Zika virus (ZIKV) is an emerging flavivirus that causes congenital abnormalities and Guillain-Barré syndrome. ZIKV infection also results in severe eye disease characterized by optic neuritis, chorioretinal atrophy, and blindness in newborns and conjunctivitis and uveitis in adults. We evaluated ZIKV infection of the eye by using recently developed mouse models of pathogenesis. ZIKV-inoculated mice developed conjunctivitis, panuveitis, and infection of the cornea, iris, optic nerve, and ganglion and bipolar cells in the retina. This phenotype was independent of the entry receptors Axl or Mertk, given that Axl(-/-), Mertk(-/-), and Axl(-/-)Mertk(-/-) double knockout mice sustained levels of infection similar to those of control animals. We also detected abundant viral RNA in tears, suggesting that virus might be secreted from lacrimal glands or shed from the cornea. This model provides a foundation for studying ZIKV-induced ocular disease, defining mechanisms of viral persistence, and developing therapeutic approaches for viral infections of the eye.


PLOS Neglected Tropical Diseases | 2016

Vector Competence of American Mosquitoes for Three Strains of Zika Virus

James Weger-Lucarelli; Claudia Rückert; Nunya Chotiwan; Chilinh Nguyen; Selene M. Garcia Luna; Joseph R. Fauver; Brian D. Foy; Rushika Perera; William C. Black; Rebekah C. Kading; Gregory D. Ebel

In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus) emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC) of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.


Journal of Virology | 2017

Development and Characterization of Recombinant Virus Generated from a New World Zika Virus Infectious Clone.

James Weger-Lucarelli; Nisha K. Duggal; Kristen M. Bullard-Feibelman; Milena Veselinovic; Hannah Romo; Chilinh Nguyen; Claudia Rückert; Aaron C. Brault; Richard A. Bowen; Mark D. Stenglein; Brian J. Geiss; Gregory D. Ebel

ABSTRACT Zika virus (ZIKV; family Flaviviridae, genus Flavivirus) is a rapidly expanding global pathogen that has been associated with severe clinical manifestations, including devastating neurological disease in infants. There are currently no molecular clones of a New World ZIKV available that lack significant attenuation, hindering progress toward understanding determinants of transmission and pathogenesis. Here we report the development and characterization of a novel ZIKV reverse genetics system based on a 2015 isolate from Puerto Rico (PRVABC59). We generated a two-plasmid infectious clone system from which infectious virus was rescued that replicates in human and mosquito cells with growth kinetics representative of wild-type ZIKV. Infectious clone-derived virus initiated infection and transmission rates in Aedes aegypti mosquitoes comparable to those of the primary isolate and displayed similar pathogenesis in AG129 mice. This infectious clone system provides a valuable resource to the research community to explore ZIKV molecular biology, vaccine development, antiviral development, diagnostics, vector competence, and disease pathogenesis. IMPORTANCE ZIKV is a rapidly spreading mosquito-borne pathogen that has been linked to Guillain-Barré syndrome in adults and congenital microcephaly in developing fetuses and infants. ZIKV can also be sexually transmitted. The viral molecular determinants of any of these phenotypes are not well understood. There is no reverse genetics system available for the current epidemic virus that will allow researchers to study ZIKV immunity, develop novel vaccines, or develop antiviral drugs. Here we provide a novel infectious clone system generated from a recent ZIKV isolated from a patient infected in Puerto Rico. This infectious clone produces virus with in vitro and in vivo characteristics similar to those of the primary isolate, providing a critical tool to study ZIKV infection and disease.


Nature Communications | 2017

Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes

Claudia Rückert; James Weger-Lucarelli; Selene M. Garcia-Luna; Michael C. Young; Alex D. Byas; Reyes A. Murrieta; Joseph R. Fauver; Gregory D. Ebel

The recent emergence of both chikungunya and Zika viruses in the Americas has significantly expanded their distribution and has thus increased the possibility that individuals may become infected by more than one Aedes aegypti-borne virus at a time. Recent clinical data support an increase in the frequency of coinfection in human patients, raising the likelihood that mosquitoes could be exposed to multiple arboviruses during one feeding episode. The impact of coinfection on the ability of relevant vector species to transmit any of these viruses (that is, their vector competence) has not been determined. Thus, we here expose Ae. aegypti mosquitoes to chikungunya, dengue-2 or Zika viruses, both individually and as double and triple infections. Our results show that these mosquitoes can be infected with and can transmit all combinations of these viruses simultaneously. Importantly, infection, dissemination and transmission rates in mosquitoes are only mildly affected by coinfection.


Science Translational Medicine | 2017

Rapid and specific detection of Asian- and African-lineage Zika viruses.

Nunya Chotiwan; Connie D. Brewster; Tereza Magalhaes; James Weger-Lucarelli; Nisha K. Duggal; Claudia Rückert; Chilinh Nguyen; Selene M. Garcia Luna; Joseph R. Fauver; Barb Andre; Meg Gray; William C. Black; Rebekah C. Kading; Gregory D. Ebel; Guillermina Kuan; Angel Balmaseda; Thomas Jaenisch; Ernesto T. A. Marques; Aaron C. Brault; Eva Harris; Brian D. Foy; Sandra L. Quackenbush; Rushika Perera; Joel Rovnak

A rapid, specific, sensitive, and inexpensive method has been developed that detects RNA from a Zika virus strain associated with the current outbreak. LAMP shines light on Zika virus Rapid and simple assays to detect infectious agents are key to tracking emerging epidemics. Chotiwan et al. describe a loop-mediated amplification (LAMP) assay that detects Zika virus RNA in human biofluids such as serum and semen as well as in mosquitoes, the insect vector that transmits the disease. This approach successfully distinguished the Asian-lineage Zika virus, associated with the current outbreak in the Americas, from the African-lineage Zika virus. This LAMP assay should enable tracking of the Asian-lineage strain as it moves into new geographical locations. A key advantage of this approach is detection without the need for RNA purification or copying RNA into DNA. Understanding the dynamics of Zika virus transmission and formulating rational strategies for its control require precise diagnostic tools that are also appropriate for resource-poor environments. We have developed a rapid and sensitive loop-mediated isothermal amplification (LAMP) assay that distinguishes Zika viruses of Asian and African lineages. The assay does not detect chikungunya virus or flaviviruses such as dengue, yellow fever, or West Nile viruses. The assay conditions allowed direct detection of Zika virus RNA in cultured infected cells; in mosquitoes; in virus-spiked samples of human blood, plasma, saliva, urine, and semen; and in infected patient serum, plasma, and semen samples without the need for RNA isolation or reverse transcription. The assay offers rapid, specific, sensitive, and inexpensive detection of the Asian-lineage Zika virus strain that is currently circulating in the Western hemisphere, and can also detect the African-lineage Zika virus strain using separate, specific primers.


American Journal of Tropical Medicine and Hygiene | 2017

American Aedes vexans Mosquitoes are Competent Vectors of Zika Virus

Alex Gendernalik; James Weger-Lucarelli; Selene M. Garcia Luna; Joseph R. Fauver; Claudia Rückert; Reyes A. Murrieta; Nicholas Bergren; Demitrios Samaras; Chilinh Nguyen; Rebekah C. Kading; Gregory D. Ebel

Starting in 2013–2014, the Americas have experienced a massive outbreak of Zika virus (ZIKV) which has now reached at least 49 countries. Although most cases have occurred in South America and the Caribbean, imported and autochthonous cases have occurred in the United States. Aedes aegypti and Aedes albopictus mosquitoes are known vectors of ZIKV. Little is known about the potential for temperate Aedes mosquitoes to transmit ZIKV. Aedes vexans has a worldwide distribution, is highly abundant in particular localities, aggressively bites humans, and is a competent vector of several arboviruses. However, it is not clear whether Ae. vexans mosquitoes are competent to transmit ZIKV. To determine the vector competence of Ae. vexans for ZIKV, wild-caught mosquitoes were exposed to an infectious bloodmeal containing a ZIKV strain isolated during the current outbreak. Approximately 80% of 148 mosquitoes tested became infected by ZIKV, and approximately 5% transmitted infectious virus after 14 days of extrinsic incubation. These results establish that Ae. vexans are competent ZIKV vectors. Their relative importance as vectors (i.e., their vectorial capacity) depends on feeding behavior, longevity, and other factors that are likely to vary in ecologically distinct environments.


Virus Evolution | 2016

Transmission bottlenecks and RNAi collectively influence tick-borne flavivirus evolution.

Nathan D. Grubaugh; Claudia Rückert; Philip M. Armstrong; Angela Bransfield; John F. Anderson; Gregory D. Ebel; Doug E. Brackney

Arthropod-borne RNA viruses exist within hosts as heterogeneous populations of viral variants and, as a result, possess great genetic plasticity. Understanding the micro-evolutionary forces shaping these viruses can provide insights into how they emerge, adapt, and persist in new and changing ecological niches. While considerable attention has been directed toward studying the population dynamics of mosquito-borne viruses, little is known about tick-borne virus populations. Therefore, using a mouse and Ixodes scapularis tick transmission model, we examined Powassan virus (POWV; Flaviviridae, Flavivirus) populations in and between both the vertebrate host and arthropod vector. We found that genetic bottlenecks, RNAi-mediated diversification, and selective constraints collectively influence POWV evolution. Together, our data provide a mechanistic explanation for the slow, long-term evolutionary trends of POWV, and suggest that all arthropod-borne viruses encounter similar selective pressures at the molecular level (i.e. RNAi), yet evolve much differently due to their unique rates and modes of transmission.


Virology | 2018

Adventitious viruses persistently infect three commonly used mosquito cell lines

James Weger-Lucarelli; Claudia Rückert; Nathan D. Grubaugh; Michael J. Misencik; Philip M. Armstrong; Mark D. Stenglein; Gregory D. Ebel; Doug E. Brackney

Mosquito cell lines have been used extensively in research to isolate and propagate arthropod-borne viruses and understand virus-vector interactions. Despite their utility as an in vitro tool, these cell lines are poorly defined and may harbor insect-specific viruses. Accordingly, we screened four commonly-used mosquito cell lines, C6/36 and U4.4 cells from Aedes albopictus, Aag2 cells from Aedes aegypti, and Hsu cells from Culex quinquefasciatus, for the presence of adventitious (i.e. exogenous) viruses. All four cell lines stained positive for double-stranded RNA, indicative of RNA virus replication. We subsequently identified viruses infecting Aag2, U4.4 and Hsu cell lines using untargeted next-generation sequencing, but not C6/36 cells. PCR confirmation revealed that these sequences stem from active viral replication and/or integration into the cellular genome. Our results show that these commonly-used mosquito cell lines are persistently-infected with several viruses. This finding may be critical to interpreting data generated in these systems.


Trends in Parasitology | 2018

How Do Virus–Mosquito Interactions Lead to Viral Emergence?

Claudia Rückert; Gregory D. Ebel

Arboviruses such as West Nile, Zika, chikungunya, dengue, and yellow fever viruses have become highly significant global pathogens through unexpected, explosive outbreaks. While the rapid progression and frequency of recent arbovirus outbreaks is associated with long-term changes in human behavior (globalization, urbanization, climate change), there are direct mosquito-virus interactions which drive shifts in host range and alter virus transmission. This review summarizes how virus-mosquito interactions are critical for these viruses to become global pathogens at molecular, physiological, evolutionary, and epidemiological scales. Integrated proactive approaches are required in order to effectively manage the emergence of mosquito-borne arboviruses, which appears likely to continue into the indefinite future.


PLOS Neglected Tropical Diseases | 2018

Variation in competence for ZIKV transmission by Aedes aegypti and Aedes albopictus in Mexico

Selene M. Garcia-Luna; James Weger-Lucarelli; Claudia Rückert; Reyes A. Murrieta; Michael C. Young; Alex D. Byas; Joseph R. Fauver; Rushika Perera; Adriana E. Flores-Suarez; Gustavo Ponce-Garcia; Américo D. Rodríguez; Gregory D. Ebel; William C. Black

Background ZIKV is a new addition to the arboviruses circulating in the New World, with more than 1 million cases since its introduction in 2015. A growing number of studies have reported vector competence (VC) of Aedes mosquitoes from several areas of the world for ZIKV transmission. Some studies have used New World mosquitoes from disparate regions and concluded that these have a variable but relatively low competence for the Asian lineage of ZIKV. Methodology/Principal findings Ten Aedes aegypti (L) and three Ae. albopictus (Skuse) collections made in 2016 from throughout Mexico were analyzed for ZIKV (PRVABC59—Asian lineage) VC. Mexican Ae. aegypti had high rates of midgut infection (MIR), dissemination (DIR) and salivary gland infection (SGIR) but low to moderate transmission rates (TR). It is unclear whether this low TR was due to heritable salivary gland escape barriers or to underestimating the amount of virus in saliva due to the loss of virus during filtering and random losses on surfaces when working with small volumes. VC varied among collections, geographic regions and whether the collection was made north or south of the Neovolcanic axis (NVA). The four rates were consistently lower in northeastern Mexico, highest in collections along the Pacific coast and intermediate in the Yucatan. All rates were lowest north of the NVA. It was difficult to assess VC in Ae. albopictus because rates varied depending upon the number of generations in the laboratory. Conclusions/Significance Mexican Ae. aegypti and Ae. albopictus are competent vectors of ZIKV. There is however large variance in vector competence among geographic sites and regions. At 14 days post infection, TR varied from 8–51% in Ae. aegypti and from 2–26% in Ae. albopictus.

Collaboration


Dive into the Claudia Rückert's collaboration.

Top Co-Authors

Avatar

Gregory D. Ebel

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chilinh Nguyen

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron C. Brault

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Alex D. Byas

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge