Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia S. López is active.

Publication


Featured researches published by Claudia S. López.


Journal of Bacteriology | 2005

Plasmid- and Chromosome-Encoded Redundant and Specific Functions Are Involved in Biosynthesis of the Siderophore Anguibactin in Vibrio anguillarum 775: a Case of Chance and Necessity?

Alejandro F. Alice; Claudia S. López; Jorge H. Crosa

We report the identification of a novel chromosome cluster of genes in Vibrio anguillarum 775 that includes redundant functional homologues of the pJM1 plasmid-harbored genes angE and angC that are involved in anguibactin biosynthesis. We also identified in this cluster a chromosomal angA gene that is essential in anguibactin biosynthesis.


Journal of Molecular Biology | 2009

Characterization of the in vitro HIV-1 capsid assembly pathway.

Eric Barklis; Ayna Alfadhli; Carolyn McQuaw; Suraj Yalamuri; Amelia Still; Robin Lid Barklis; Ben Kukull; Claudia S. López

During the morphogenesis of mature human immunodeficiency virus-1 cores, viral capsid proteins assemble conical or tubular shells around viral ribonucleoprotein complexes. This assembly step is mimicked in vitro through reactions in which capsid proteins oligomerize to form long tubes, and this process can be modeled as consisting of a slow nucleation period, followed by a rapid phase of tube growth. We have developed a novel fluorescence microscopy approach to monitor in vitro assembly reactions and have employed it, along with electron microscopy analysis, to characterize the assembly process. Our results indicate that temperature, salt concentration, and pH changes have differential effects on tube nucleation and growth steps. We also demonstrate that assembly can be unidirectional or bidirectional, that growth can be capped, and that proteins can assemble onto the surfaces of tubes, yielding multiwalled or nested structures. Finally, experiments show that a peptide inhibitor of in vitro assembly also can dismantle preexisting tubes, suggesting that such reagents may possess antiviral effects against both viral assembly and uncoating. Our investigations help establish a basis for understanding the mechanism of mature human immunodeficiency virus-1 core assembly and avenues for antiviral inhibition.


Journal of Bacteriology | 2006

Genetic and Transcriptional Analysis of the Siderophore Malleobactin Biosynthesis and Transport Genes in the Human Pathogen Burkholderia pseudomallei K96243

Alejandro F. Alice; Claudia S. López; Carolyn A. Lowe; Maria A. Ledesma; Jorge H. Crosa

Burkholderia pseudomallei is a gram-negative facultative intracellular pathogen that causes melioidosis, an invasive disease of humans and animals. To address the response of this bacterium to iron-limiting conditions, we first performed a global transcriptional analysis of RNA extracted from bacteria grown under iron-limiting and iron-rich conditions by microarrays. We focused our study on those open reading frames (ORFs) induced under iron limitation, which encoded predicted proteins that could be involved in the biosynthesis and uptake of the siderophore malleobactin. We purified this siderophore and determined that it consisted of at least three compounds with different molecular weights. We demonstrated that ORFs BPSL1776 and BPSL1774, designated mbaA and mbaF, respectively, are involved in the biosynthesis of malleobactin, while BPSL1775, named fmtA, is involved in its transport. These genes are in an operon with two other ORFs (mbaJ and mbaI) whose transcription is under the control of MbaS, a protein that belongs to the extracytoplasmic function sigma factors. Interestingly, the transcription of the mbaA, fmtA, and mbaS genes is not controlled by the availability of the siderophore malleobactin.


Journal of Virology | 2011

Second-Site Compensatory Mutations of HIV-1 Capsid Mutations

Colleen Noviello; Claudia S. López; Ben Kukull; Henry McNett; Amelia Still; Jacob Eccles; Rachel Sloan; Eric Barklis

ABSTRACT The human immunodeficiency virus (HIV) capsid (CA) protein assembles into a hexameric lattice that forms the mature virus core. Contacts between the CA N-terminal domain (NTD) of one monomer and the C-terminal domain (CTD) of the adjacent monomer are important for the assembly of this core. In this study, we have examined the effects of mutations in the NTD region associated with this interaction. We have found that such mutations yielded modest reductions of virus release but major effects on viral infectivity. Cell culture and in vitro assays indicate that the infectivity defects relate to abnormalities in the viral cores. We have selected second-site compensatory mutations that partially restored HIV infectivity. These mutations map to the CA CTD and to spacer peptide 1 (SP1), the portion of the precursor Gag protein immediately C terminal to the CTD. The compensatory mutations do not locate to the molecularly modeled intermolecular NTD-CTD interface. Rather, the compensatory mutations appear to act indirectly, possibly by realignment of the C-terminal helix of the CA CTD, which participates in the NTD-CTD interface and has been shown to serve an important role in the assembly of infectious virus.


Journal of Cell Science | 2017

Deep nuclear invaginations are linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture.

Danielle M. Jorgens; Jamie L. Inman; Michal Wojcik; Claire Robertson; Hildur Palsdottir; Wen Ting Tsai; Haina Huang; Alexandre Bruni-Cardoso; Claudia S. López; Mina J. Bissell; Ke Xu; Manfred Auer

ABSTRACT The importance of context in regulation of gene expression is now an accepted principle; yet the mechanism by which the microenvironment communicates with the nucleus and chromatin in healthy tissues is poorly understood. A functional role for nuclear and cytoskeletal architecture is suggested by the phenotypic differences observed between epithelial and mesenchymal cells. Capitalizing on recent advances in cryogenic techniques, volume electron microscopy and super-resolution light microscopy, we studied human mammary epithelial cells in three-dimensional (3D) cultures forming growth-arrested acini. Intriguingly, we found deep nuclear invaginations and tunnels traversing the nucleus, encasing cytoskeletal actin and/or intermediate filaments, which connect to the outer nuclear envelope. The cytoskeleton is also connected both to other cells through desmosome adhesion complexes and to the extracellular matrix through hemidesmosomes. This finding supports a physical and/or mechanical link from the desmosomes and hemidesmosomes to the nucleus, which had previously been hypothesized but now is visualized for the first time. These unique structures, including the nuclear invaginations and the cytoskeletal connectivity to the cell nucleus, are consistent with a dynamic reciprocity between the nucleus and the outside of epithelial cells and tissues. Summary: Fluorescence and electron microscopy analysis of HMECs grown in 3D reveals deep nuclear invaginations and tunnels that wrap around cytoskeleton cables, thus connecting the microenvironment to the nucleus.


Virology | 2011

Determinants of the HIV-1 core assembly pathway

Claudia S. López; Jacob Eccles; Amelia Still; Rachel Sloan; Robin Lid Barklis; Seyram Tsagli; Eric Barklis

Based on structural information, we have analyzed the mechanism of mature HIV-1 core assembly and the contributions of structural elements to the assembly process. Through the use of several in vitro assembly assay systems, we have examined details of how capsid (CA) protein helix 1, ß-hairpin and cyclophilin loop elements impact assembly-dependent protein interactions, and we present evidence for a contribution of CA helix 6 to the mature assembly-competent conformation of CA. Additional experiments with mixtures of proteins in assembly reactions provide novel analyses of the mature core assembly mechanism. Our results support a model in which initial assembly products serve as scaffolds for further assembly by converting incoming subunits to assembly proficient conformations, while mutant subunits increase the probability of assembly termination events.


Frontiers in Physiology | 2017

Increased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition

Madeline Midgett; Claudia S. López; Larry L. David; Alina Maloyan; Sandra Rugonyi

Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial–mesenchymal cell transition is one of the many complex developmental events involved in transforming the early embryonic outflow tract into the aorta, pulmonary trunk, interventricular septum, and semilunar valves. This study elucidated the effects of increased hemodynamic load on endothelial–mesenchymal transition remodeling of the outflow tract cushions in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24. Increased hemodynamic load induced increased cell density in outflow tract cushions, fewer cells along the endocardial lining, endocardium junction disruption, and altered periostin expression as measured by confocal microscopy analysis. In addition, 3D focused ion beam scanning electron microscopy analysis determined that a portion of endocardial cells adopted a migratory shape after outflow tract banding that is more irregular, elongated, and with extensive cellular projections compared to normal cells. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with a more active stage of endothelial–mesenchymal transition. Outflow tract banding enhances the endothelial–mesenchymal transition phenotype during formation of the outflow tract cushions, suggesting that endothelial–mesenchymal transition is a critical developmental process that when disturbed by altered blood flow gives rise to cardiac malformation and defects.


Journal of Biological Chemistry | 2013

Analysis of Small Molecule Ligands Targeting the HIV-1 Matrix Protein-RNA Binding Site

Ayna Alfadhli; Henry McNett; Jacob Eccles; Seyram Tsagli; Colleen Noviello; Rachel Sloan; Claudia S. López; David H. Peyton; Eric Barklis

Background: The HIV-1 matrix protein (MA) binds both RNA and phospholipids. Results: Ligands that compete with RNA for binding to MA were identified and characterized. Conclusion: Thiadiazolanes bind to residues in the HIV-1 MA β-II-V cleft that mediates RNA and phospholipid binding to MA. Significance: These investigations provide new insights into MA-ligand binding and antiviral design. The matrix domain (MA) of the HIV-1 precursor Gag (PrGag) protein directs PrGag proteins to assembly sites at the plasma membrane by virtue of its affinity to the phospholipid, phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2). MA also binds to RNA at a site that overlaps its PI(4,5)P2 site, suggesting that RNA binding may protect MA from associating with inappropriate cellular membranes prior to PrGag delivery to the PM. Based on this, we have developed an assay in which small molecule competitors to MA-RNA binding can be characterized, with the assumption that such compounds might interfere with essential MA functions and help elucidate additional features of MA binding. Following this approach, we have identified four compounds, including three thiadiazolanes, that compete with RNA for MA binding. We also have identified MA residues involved in thiadiazolane binding and found that they overlap the MA PI(4,5)P2 and RNA sites. Cell culture studies demonstrated that thiadiazolanes inhibit HIV-1 replication but are associated with significant levels of toxicity. Nevertheless, these observations provide new insights into MA binding and pave the way for the development of antivirals that target the HIV-1 matrix domain.


Virology | 2013

Second site reversion of a mutation near the amino terminus of the HIV-1 capsid protein.

Claudia S. López; Seyram Tsagli; Rachel Sloan; Jacob Eccles; Eric Barklis

During HIV-1 morphogenesis, the precursor Gag protein is processed to release capsid (CA) proteins that form the mature virus core. In this process, the CA proteins assemble a lattice in which N-terminal domain (NTD) helices 1-3 are critical for multimer formation. Mature core assembly requires refolding of the N-terminus of CA into a β-hairpin, but the precise contribution of the hairpin core morphogenesis is unclear. We found that mutations at isoleucine 15 (I15), between the β-hairpin and NTD helix 1 are incompatible with proper mature core assembly. However, a compensatory mutation of histidine 12 in the β-hairpin to a tyrosine was selected by long term passage of an I15 mutant virus in T cells. The tyrosine does not interact directly with residue 15, but with NTD helix 3, supporting a model in which β-hairpin folding serves to align helix 3 for mature NTD multimerization.


Virology | 2014

RRE-dependent HIV-1 Env RNA effects on Gag protein expression, assembly and release.

Claudia S. López; Rachel Sloan; Isabel Cylinder; Susan L. Kozak; David Kabat; Eric Barklis

The HIV-1 Gag proteins are translated from the full-length HIV-1 viral RNA (vRNA), whereas the envelope (Env) protein is translated from incompletely spliced Env mRNAs. Nuclear export of vRNAs and Env mRNAs is mediated by the Rev accessory protein which binds to the rev-responsive element (RRE) present on these RNAs. Evidence has shown there is a direct or indirect interaction between the Gag protein, and the cytoplasmic tail (CT) of the Env protein. Our current work shows that env gene expression impacts HIV-1 Gag expression and function in two ways. At the protein level, full-length Env expression altered Gag protein expression, while Env CT-deletion proteins did not. At the RNA level, RRE-containing Env mRNA expression reduced Gag expression, processing, and virus particle release from cells. Our results support models in which Gag is influenced by the Env CT, and Env mRNAs compete with vRNAs for nuclear export.

Collaboration


Dive into the Claudia S. López's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle M. Jorgens

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge