Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Silberstein is active.

Publication


Featured researches published by Claudia Silberstein.


Biology of Reproduction | 2006

Postnatal Expression of Aquaporins in Epithelial Cells of the Rat Epididymis

Nicolas Da Silva; Claudia Silberstein; Valérie Beaulieu; Christine Piétrement; Alfred N. Van Hoek; Dennis Brown; Sylvie Breton

Abstract The mammalian aquaporins (AQPs) are a family of 13 transmembrane channel proteins that are involved in the transport of water in numerous organs. In the male excurrent duct, the movement of fluid and solutes across the epithelium is essential for establishing the proper luminal environment in which sperm mature and are stored. AQP9 is abundantly expressed in the efferent ducts, the epididymis, and the vas deferens, where it could represent an important apical pathway for transmembrane water and solute movement. However, other organs in which water transport is critical, including the kidney, the lung, or the eye, express several different AQPs with a cell-specific pattern. To undertake a systematic analysis of the expression of known AQPs in the postnatal and adult rat epididymis, we examined the expression of their respective mRNAs in epithelial cells isolated by laser capture microdissection (LCM), and we determined their corresponding protein expression pattern by immunofluorescence and Western blotting. Our data show that, whereas AQP9 is the main AQP of the epididymis, the mRNA specific for Aqp2, 5, 7, and 11 are also expressed in epididymal epithelial cells. AQP5 protein colocalizes with AQP9 in the apical membrane of a subpopulation of principal cells in the corpus and cauda regions. Aqp2 mRNA was detected in epithelial cells after the second postnatal week and the amount significantly increased up to adulthood. However, AQP2 protein was detected only in the distal cauda of young rats (between the second and fourth postnatal week). No AQP2 protein was detected in the adult epididymis, indicating that posttranscriptional mechanisms are involved in the regulation of AQP2 expression. In addition, epididymal epithelial cells express significant amounts of the mRNAs coding for AQP7 and 11. No mRNA or protein for AQPs 0, 4, 6, and 8 were detectable in epithelial cells, and Aqp1 was detected in whole epididymal samples, but not in epithelial cells. Thanks to the recent development of microdissection technologies, our observations suggest that epididymal epithelial cells express several members of the AQP family with a region-specific pattern. AQPs may be involved not only in the transepithelial transport of water in the epididymis but also in the postnatal development of this organ, as suggested by the differential expression of AQP2.


Journal of Biological Chemistry | 2008

Role of NHERF1, Cystic Fibrosis Transmembrane Conductance Regulator, and cAMP in the Regulation of Aquaporin 9

Christine Piétrement; Nicolas Da Silva; Claudia Silberstein; Marianne James; Mireille Marsolais; Alfred N. Van Hoek; Dennis Brown; Núria M. Pastor-Soler; Nadia Ameen; Raynald Laprade; Vijaya Ramesh; Sylvie Breton

Water and solute transport across the plasma membrane of cells is a crucial biological function that is mediated mainly by aquaporins and aquaglyceroporins. The regulation of these membrane proteins is still incompletely understood. Using the male reproductive tract as a model system in which water and glycerol transport are critical for the establishment of fertility, we now report a novel pathway for the regulation of aquaporin 9 (AQP9) permeability. AQP9 is the major aquaglyceroporin of the epididymis, liver, and peripheral leukocytes, and its COOH-terminal portion contains a putative PDZ binding motif (SVIM). Here we show that NHERF1, cystic fibrosis transmembrane conductance regulator (CFTR), and AQP9 co-localize in the apical membrane of principal cells of the epididymis and the vas deferens, and that both NHERF1 and CFTR co-immunoprecipitate with AQP9. Overlay assays revealed that AQP9 binds to both the PDZ1 and PDZ2 domains of NHERF1, with an apparently higher affinity for PDZ1 versus PDZ2. Pull-down assays showed that the AQP9 COOH-terminal SVIM motif is essential for interaction with NHERF1. Functional assays on isolated tubules perfused in vitro showed a high permeability of the apical membrane to glycerol, which is inhibited by the AQP9 inhibitor, phloretin, and is markedly activated by cAMP. The CFTR inhibitors DPC, GlyH-101 and CFTRinh-172 all significantly reduced the cAMP-activated glycerol-induced cell swelling. We propose that CFTR is an important regulator of AQP9 and that the interaction between AQP9, NHERF1, and CFTR may facilitate the activation of AQP9 by cAMP.


Brazilian Journal of Medical and Biological Research | 1999

Functional characterization and localization of AQP3 in the human colon.

Claudia Silberstein; A. Kierbel; G. Amodeo; Elsa Zotta; F. Bigi; D. Berkowski; Cristina Ibarra

Water channels or aquaporins (AQPs) have been identified in a large variety of tissues. Nevertheless, their role in the human gastrointestinal tract, where their action is essential for the reabsorption and secretion of water and electrolytes, is still unclear. The purpose of the present study was to investigate the structure and function of water channels expressed in the human colon. A cDNA fragment of about 420 bp with a 98% identity to human AQP3 was amplified from human stomach, small intestine and colon by reverse transcription polymerase chain reaction (RT-PCR) and a transcript of 2.2 kb was expressed more abundantly in colon than in jejunum, ileum and stomach as indicated by Northern blots. Expression of mRNA from the colon of adults and children but not from other gastrointestinal regions in Xenopus oocytes enhanced the osmotic water permeability, and the urea and glycerol transport in a manner sensitive to an antisense AQP3 oligonucleotide, indicating the presence of functional AQP3. Immunocytochemistry and immunofluorescence studies in human colon revealed that the AQP3 protein is restricted to the villus epithelial cells. The immunostaining within these cells was more intense in the apical than in the basolateral membranes. The presence of AQP3 in villus epithelial cells suggests that AQP3 is implicated in water absorption across human colonic surface cells.


Biochimica et Biophysica Acta | 1999

Molecular and functional characterization of an amphibian urea transporter

Cécile Couriaud; Christine Leroy; Matthieu Simon; Claudia Silberstein; Pascal Bailly; Pierre Ripoche; Germain Rousselet

We report the characterization of a frog (Rana esculenta) urea transporter (fUT). The cloned cDNA is 1.4 kb long and contains a putative open reading frame of 1203 bp. In frog urinary bladder, the gene is expressed as two mRNAs of 4.3 and 1.6 kb. The fUT protein is 63.1 and 56.3% identical to rat UT-A2 and UT-B1, respectively. The internal duplication of UT-A2 and UT-B, as well as the double LP box urea transporter signature sequence were found in this amphibian urea transporter. When expressed in Xenopus oocytes, fUT induced a 10-fold increase in urea permeability, which was blocked by both phloretin and mercurial reagents. The fUT protein did not transport thiourea, but the fUT-mediated urea transport was strongly inhibited by this compound. Thus, this amphibian urea transporter displays transport characteristics in between those of UT-A2 and UT-B.


Brazilian Journal of Medical and Biological Research | 2004

The Shiga toxin 2 B subunit inhibits net fluid absorption in human colon and elicits fluid accumulation in rat colon loops.

V. Pistone Creydt; M. Fernandez Miyakawa; F. Martín; Elsa Zotta; Claudia Silberstein; Cristina Ibarra

Shiga toxin (Stx)-producing Escherichia coli (STEC) colonizes the large intestine causing a spectrum of disorders, including watery diarrhea, bloody diarrhea (hemorrhagic colitis), and hemolytic-uremic syndrome. It is estimated that hemolytic-uremic syndrome is the most common cause of acute renal failure in infants in Argentina. Stx is a multimeric toxin composed of one A subunit and five B subunits. In this study we demonstrate that the Stx2 B subunit inhibits the water absorption (Jw) across the human and rat colonic mucosa without altering the electrical parameters measured as transepithelial potential difference and short circuit current. The time-course Jw inhibition by 400 ng/ml purified Stx2 B subunit was similar to that obtained using 12 ng/ml Stx2 holotoxin suggesting that both, A and B subunits of Stx2 contributed to inhibit the Jw. Moreover, non-hemorrhagic fluid accumulation was observed in rat colon loops after 16 h of treatment with 3 and 30 ng/ml Stx2 B subunit. These changes indicate that Stx2 B subunit induces fluid accumulation independently of A subunit activity by altering the usual balance of intestinal absorption and secretion toward net secretion. In conclusion, our results suggest that the Stx2 B subunit, which is non-toxic for Vero cells, may contribute to the watery diarrhea observed in STEC infection. Further studies will be necessary to determine whether the toxicity of Stx2 B subunit may have pathogenic consequences when it is used as a component in an acellular STEC vaccine or as a vector in cancer vaccines.


American Journal of Physiology-renal Physiology | 2009

Vasopressin-induced differential stimulation of AQP4 splice variants regulates the in-membrane assembly of orthogonal arrays

Alfred N. Van Hoek; Richard Bouley; YingXian Lu; Claudia Silberstein; Dennis Brown; Martin B. Wax; Rajkumar V. Patil

Aquaporin-4 (AQP4) is a basolateral water channel in collecting duct principal cells and assembles into orthogonal array particles (OAPs), the size of which appears to depend on relative expression levels of AQP4 splice variants. Because the higher-order organization of AQP4 was perturbed by vasopressin in Brattleboro rats and phosphorylation sites have been identified on AQP4, we investigated whether vasopressin and forskolin (Fk) affect AQP4 assembly and/or expression in LLC-PK(1) cells stably transfected with the AQP4 splice variant M23, which is responsible for formation of OAPs, and/or the splice variant M1, which does not form OAPs. Our data show that [lys(8)]-vasopressin (LVP) and Fk treatment led to differential increases in expression levels of M23-AQP4 and M1-AQP4 that varied as a function of incubation time. At early time points (day 1) expression of M1 was significantly stimulated (4.5-fold), over that of M23 (1.6-fold), but after 3 days the expression of M23 became predominant (4.1-fold) over that of M1 (1.9-fold). This pattern of stimulation was dependent on an intact AQP4 residue serine 111 and required protein synthesis. In cells expressing both M1 and M23 (M1/M23 approximately 1), with small sized OAPs at the membrane, the LVP/Fk-induced stimulation of M23 was modified and mimicked that of M1 when expressed alone, suggesting a dominant role for M1. In Brattleboro kidney inner medulla, an 8-day chronic exposure to the vasopressin agonist (dDAVP) led to reduction in M1 and a significant increase in M23 immunoblot staining (M1/M23 = 2/3 --> 1/4). These results indicate that AQP4 organization and expression are regulated by vasopressin in vivo and in vitro and demonstrate that the dominant role for M1 is restricted to a one-to-one interaction between AQP4 splice variants that regulates the membrane expression of OAPs.


Pediatric Research | 2011

A Glucosylceramide Synthase Inhibitor Protects Rats Against the Cytotoxic Effects Of Shiga Toxin-2

Claudia Silberstein; María Soledad Lucero; Elsa Zotta; Diane P. Copeland; Li Lingyun; Horacio A. Repetto; Cristina Ibarra

Postdiarrhea hemolytic uremic syndrome is the most common cause of acute renal failure in children in Argentina. Renal damage has been strongly associated with Shiga toxin (Stx), which binds to the globotriaosylceramide (Gb3) receptor on the plasma membrane of target cells. The purpose of the study was to evaluate the in vivo effects of C-9, a potent inhibitor of glucosylceramide synthase and Gb3 synthesis, on kidney and colon in an experimental model of hemolytic uremic syndrome in rats. Rats were i.p. injected with supernatant from recombinant Escherichia coli expressing Stx2 (sStx2). A group of these rats were orally treated with C-9 during 6 d, from 2 d prior until 4 d after sStx2 injection. The injection of sStx2 caused renal damage as well as a loss of goblet cells in colonic mucosa. Oral treatment with C-9 significantly decreased rat mortality to 50% and reduced the extension of renal and intestinal injuries in the surviving rats. The C-9 also decreased Gb3 and glucosylceramide expression levels in rat kidneys. It is particularly interesting that an improvement was seen when C-9 was administered 2 d before challenge, which makes it potentially useful for prophylaxis.


Human & Experimental Toxicology | 2011

Clostridium perfringens epsilon toxin is cytotoxic for human renal tubular epithelial cells.

Mariano Fernandez Miyakawa; Osvaldo Zabal; Claudia Silberstein

Clostridium perfringens epsilon toxin (ETX) is responsible for a fatal enterotoxemia in different animal species, producing extensive renal damage, neurological disturbance and edema of lungs, heart and kidneys. However, there is no information about the susceptibility of humans to ETX. Here, we report that primary cultures of human renal tubular epithelial cells (HRTEC) exposed to ETX showed a marked swelling with subsequent large blebs surrounding most cells. The incubation of HRTEC with ETX produced a reduction of cell viability in a dose- and time-dependent manner. The CD50 after 1-hour and 24-hour incubation were 3 µg/mL and 0.5 µg/mL, respectively. The pulse with ETX for 3 min was enough to produce a significant cytotoxic effect on HRTEC after 1-hour incubation. ETX binds to HRTEC forming a large complex of about 160 kDa similar to what was found in the Madin-Darby canine kidney (MDCK) cell line. The HRTEC could be a useful cell model to improve the understanding of the mechanisms involved on the cell damage mediated by ETX.


Digestive Diseases and Sciences | 2000

Effect of Shiga toxin 2 on water and ion transport in human colon in vitro

Paula Fiorito; Juan M. Burgos; Mariano Fernandez Miyakawa; Marta Rivas; Germán Chillemi; Dario Berkowski; Elsa Zotta; Claudia Silberstein; Cristina Ibarra

Shiga toxin-producing Escherichia coli (STEC) colonize the lower segments of the human gastrointestinal tract, causing gastrointestinal and systemic diseases. In this study, the effects of Shiga toxin 2 (Stx2) on fluid absorption and ion transport in the human colon were examined. Net water movement (Jw) and short-circuit current (Isc) were simultaneously measured across the colonic mucosa incubated with crude or purified Stx2. Stx2 significantly inhibited the absorptive Jw with no effect on the basal Isc after 60 min of exposure. These effects may be due to the inhibition of a nonelectrogenic transport system present in the surface colonic villus cells. Morphological studies of the colonic mucosa treated with crude or purified Stx2 demonstrated a selective damage in the absorptive villus epithelial cells. These findings suggest that Stx2 inhibits water absorption across the human colon by acting on a specific cell population: the mature, differentiated absorptive villus epithelium.


PLOS ONE | 2014

Effects of Escherichia Coli Subtilase Cytotoxin and Shiga Toxin 2 on Primary Cultures of Human Renal Tubular Epithelial Cells

Laura B. Márquez; Natalia Velázquez; Horacio A. Repetto; Adrienne W. Paton; James C. Paton; Cristina Ibarra; Claudia Silberstein

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause post-diarrhea Hemolytic Uremic Syndrome (HUS), which is the most common cause of acute renal failure in children in many parts of the world. Several non-O157 STEC strains also produce Subtilase cytotoxin (SubAB) that may contribute to HUS pathogenesis. The aim of the present work was to examine the cytotoxic effects of SubAB on primary cultures of human cortical renal tubular epithelial cells (HRTEC) and compare its effects with those produced by Shiga toxin type 2 (Stx2), in order to evaluate their contribution to renal injury in HUS. For this purpose, cell viability, proliferation rate, and apoptosis were assayed on HRTEC incubated with SubAB and/or Stx2 toxins. SubAB significantly reduced cell viability and cell proliferation rate, as well as stimulating cell apoptosis in HRTEC cultures in a time dependent manner. However, HRTEC cultures were significantly more sensitive to the cytotoxic effects of Stx2 than those produced by SubAB. No synergism was observed when HRTEC were co-incubated with both SubAB and Stx2. When HRTEC were incubated with the inactive SubAA272B toxin, results were similar to those in untreated control cells. Similar stimulation of apoptosis was observed in Vero cells incubated with SubAB or/and Stx2, compared to HRTEC. In conclusion, primary cultures of HRTEC are significantly sensitive to the cytotoxic effects of SubAB, although, in a lesser extent compared to Stx2.

Collaboration


Dive into the Claudia Silberstein's collaboration.

Top Co-Authors

Avatar

Cristina Ibarra

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Elsa Zotta

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge Goldstein

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Núñez

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Javier Boccoli

University of Buenos Aires

View shared research outputs
Researchain Logo
Decentralizing Knowledge